Practice exercises

Vector Spaces. Change of basis – Survey

- 1. Analyze whether the following subsets are vector subspaces of the given ones. In affirmative case, obtain a basis for such subset.
 - (a) $\mathcal{W} = \{(x, y, z) \in \mathbb{R}^3 \mid x y + 2z = 3x + y = 0\}$ of \mathbb{R}^3
 - (b) $\mathcal{W} = \{ M \in \mathcal{M}_{3 \times 3}(\mathbb{R}) \mid M = M^T \} \text{ of } M_{3 \times 3}(\mathbb{R}) \}$
 - (c) $\mathcal{W} = \{ p(t) \in \mathbb{P}_2(\mathbb{R}) \mid 2p(0) p(1) = 2 \}$ of $P_2(\mathbb{R})$
- 2. Analyze if
 - (a) $\mathcal{B} = \{(1, 2, -1), (0, 1, 1), (1, 0, -3)\}$ is a basis of \mathbb{R}^3 (b) $\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\}$ is a basis of $M_{2 \times 2}(\mathbb{R})$ (c) $\mathcal{B} = \{-x^2 + x + 5, 3x^2 + 5x + 3, 2x^2 + 2x - 1\}$ is a basis of $P_2(\mathbb{R})$
- 3. In the space of polynomials of degree, at most , 3 with real coefficients we consider the vectorial subspace spanned by the polynomials fulfilling the conditions

$$p'(1) = 0, \quad p'(2) = 0.$$

Obtain a basis of this vectorial space.

4. Obtain the null space and the vectorial space generated by the columns of the following matrices:

$$A = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 1 \\ 2 & 1 & 3 \\ 1 & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 1 & 2 & -1 \\ 0 & 4 & 2 & 2 \\ 1 & 3 & 0 & 3 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

- 5. Given the vectors $v_1 = (1, 2, -1, 1)$, $v_2 = (2, 3, -1, 2)$, $v_3 = (1, 3, -2, 1)$ and $v_4 = (2, 1, 1, 2)$ of \mathbb{R}^4 , we want:
 - (a) To know if they form a basis of \mathbb{R}^4 .
 - (b) If not, we want to complete a basis of \mathbb{R}^4 and obtain the coordinates of the vector v = (4, 1, 0, 1) in such a base.

6. Given the the basis of \mathbb{R}^3

$$\mathcal{B}_1 = \{(1, 0, -2), (0, 2, 1), (1, 1, -2)\},\$$

obtain the matrix of the change of basis from \mathcal{B}_1 to the canonical basis \mathcal{B}_c and from \mathcal{B}_c to \mathcal{B}_1 , where the canonical basis of \mathbb{R}^3 is

$$\mathcal{B}_c = \{(1,0,0), (0,1,0), (0,0,1)\}.$$

Given the vector u = (1, -1, 3). Obtain its coordinates with respect to the basis \mathcal{B}_1 .

7. We consider the following basis of \mathbb{R}^3 :

$$\mathcal{B}_1 = \{(0,2,2), (2,0,-1), (3,0,0)\}$$
 and $\mathcal{B}_2 = \{(2,0,2), (1,2,0), (0,0,1)\}.$

- (a) Obtain the matrix of the change of basis from \mathcal{B}_1 to \mathcal{B}_2 .
- (b) Given the vector (1, 1, 1) with coordinates with respect to \mathcal{B}_1 , obtain its coordinates with respect to \mathcal{B}_2 .
- 8. In the vectorial space $P_1(\mathbb{R})$ we consider the basis

$$\mathcal{B}_1 = \{t, 1\}$$
 and $\mathcal{B}_2 = \{1+t, 1-t\}.$

We want to:

- (a) Obtain the matrices of change of basis from \mathcal{B}_1 to \mathcal{B}_2 , and the one form \mathcal{B}_2 to \mathcal{B}_1 .
- (b) Given the polynomial p(t) = t+3, use the correct matrix of change of basis to obtain its coordinates with respect to the basis \mathcal{B}_2 .
- 9. In the vectorial space $M_{2\times 2}(\mathbb{R})$ we consider the basis

$$\mathcal{B}_1 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} \right\}.$$

Find the matrix of change of basis from the canonical basis of $M_{2\times 2}(\mathbb{R})$ to \mathcal{B}_1 , and obtain the coordinates of

$$A = \begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix}$$

with respect to \mathcal{B}_1 .

10. In the vectorial space $M_{2\times 2}(\mathbb{R})$ we consider the canonical basis \mathcal{B}_c , and the basis

$$\mathcal{B}_1 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\}.$$

We want to:

- (a) Find the matrix of change of basis from \mathcal{B}_1 to \mathcal{B}_c , and from \mathcal{B}_c to \mathcal{B}_1 .
- (b) Given the matrix

$$C = \begin{pmatrix} 1 & 2\\ 2 & 1 \end{pmatrix}$$

obtain its coordinates with respect to the basis \mathcal{B}_1 .

11. Given the following basis of \mathbb{R}^4 :

$$\mathcal{B} = \{(1, 0, 2, 1), (-1, 1, 0, 0), (-1, 0, 2, 1), (1, -1, 0, 1)\},\$$

we want to obtain the matrix of the change of basis from \mathcal{B} to the canonical basis of \mathbb{R}^4 , the matrix of the change of basis from the canonical basis of \mathbb{R}^4 to \mathcal{B} , and the coordinates of the vector (1, -2, 0, 1) with respect to the basis \mathcal{B} .

12. In the vectorial space $\mathbb{P}_3(\mathbb{R})$ we consider the canonical basis $\mathcal{B}_c = \{1, t, t^2, t^3\}$ and the basis $\mathcal{B}_1 = \{t^2 + t^3, t + t^2, t, 1\}$.

We want to:

- (a) Obtain the matrix of change of basis from \mathcal{B}_1 to \mathcal{B}_c , and from \mathcal{B}_c to \mathcal{B}_1 .
- (b) Given the polynomial $1 + t + t^2 + t^3$, use the right matrix of change of basis to obtain its coordinates in the basis \mathcal{B}_1 .
- 13. In the vectorial space $\mathbb{P}_3(\mathbb{R})$ we consider the basis $\mathcal{B}_1 = \{t^3, t^2, t, 1\}$ and the basis $\mathcal{B}_1 = \{t^3, t+t^2, 1+t, 1\}$.

We want to:

- (a) Obtain the matrix of change of basis from \mathcal{B}_1 to \mathcal{B}_2 , and from \mathcal{B}_2 to \mathcal{B}_1 .
- (b) Given the polynomial $t^3 + t^2 + t$, use the right matrix of change of basis to obtain its coordinates in the basis \mathcal{B}_2 .