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Discrete Multiple Orthogonal Polynomials

One needs r ≥ 2 measures (µi )
r
i=1.

The polynomials are indexed by a multi-index
~n = (n1, . . . , nr ) ∈ N

r , with length |~n| =
∑

ni .

A type II multiple orthogonal polynomial is defined as a
polynomial P~n of degree ≤ |~n| so that for i = 1, . . . , r ,

∞∑

x=0

p~n(x) x
k ωi(x) = 0, k = 0, 1, . . . , ni − 1.

The index ~n is said to be normal if P~n is unique (up to a
multiplicative factor) and has exactly degree |~n|.

System of measures (µi ) for which all the multi-indices are
normal are known as perfect systems.
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The Nearest Neighbor Recurrence Relation (NNRR)

xP~n(x) = P~n+~ek (x) + β~n,kP~n(x) +

r∑

j=1

a~n,jP~n−~ej (x).

The NNRR connects MOP of second type P~n with the
polynomial of degree one higher P~n+~ek and all the neighbors
of degree one lower P~n−~ej for j = 1, . . . , r .
Computing the coefficients:

a~n,j =

∞∑

x=0

xnj P~n(x)ωj (x)

∞∑

x=0

xnj−1 P~n−~ej (x)ωj (x)

,

For r = 2, we have

pn1+1,n2(x)− pn1,n2+1(x) = pn1,n2(x).
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THE EXAMPLE
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Multiple Meixner Polynomials of second type

The expression

Mβ1,β2,c
n1,n2

(x) =

n1∑

k1=0

n2∑

k2=0

(n1
k1

)(n2
k2

) cn1+n2−k1−k2

(c − 1)n1+n2
(−x)k1+k2(β2+x−k1)n2−k2(β1+x)n1−k1

The coefficients of the NNRR:

an1,n2,1 = cn1
(β1 + n1 − 1)(β2 − n1 − β1)

(1− c)2(n2 + β2 − n1 − β1)
,

an1,n2,2 = cn2
(β2 + n2 − 1)(β1 − n2 − β2)

(1− c)2(n1 + β1 − n2 − β2)
,

βn1,n2,k =
n1 + n2

1− c
+ (nk + βk)

c

1− c
, k = 1, 2.

cn1,n2 =
c(n2 − n1 + β2 − β1)

1− c
.
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The 1st factorization

The coefficients of the NNRR:

aN,n2,1 = cn1
(β1 + N − 1)(β2 − N − β1)

(1− c)2(n2 + β2 − N − β1)
,

aN,n2,2 = cn2
(β2 + n2 − 1)(β1 − n2 − β2)

(1− c)2(N + β1 − n2 − β2)
,

cn1,n2 =
c(n2 − N + β2 − β1)

1− c

The case β1 = 1− N

M
1−N,β2,c

(N,n2)
(x) = M

1−N,β2,c

(N,0) (x)R(0,n2)(x) = (x−N+1)NM
β2+N
n2

(x−N)
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The 2nd factorization

the 2nd case: Moving through the first index

M
1−N,β2,c

(N+n1,0)
(x) = M

1−N,β2,c

(N,0) (x)U(n1,0)(x) = (x−N+1)NM
N+1
n1

(x−N)
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The factorization and the orthogonality

pn1+1,n2(x)− pn1,n2+1(x) = (βn1,n2,2 − βn1,n2,1)pn1,n2(x).

The general case

M
1−N,β2,c

(N+n1,n2)
(x) = (x − N + 1)NM

1+N,β2+N,c

(n1,n2)
(x − N)

The properties of orthogonality for the case β1 = 1− N

N∑

x=0

M
1−N,β2,c

(n1,n2)
(x)x

k (1 − N)x c
x

Γ(x + 1)
+

∞∑

x=0

(∆
N
M

1−N,β2,c

(n1,n2)
(x))(∆

N
x
k
) c

x
= 0, 0 ≤ k ≤ n1 − 1,

∞∑

x=0

M
1−N,β2,c

(n1,n2)
(x)x

k (β2)x c
x

Γ(x + 1)
= 0, 0 ≤ k ≤ n2 − 1.

12th OPSFA – Honoring Professor Ahmed Fitouhi

R. S. Costas-Santos : MULT. MEIXNER ORTH. POL. OF SECOND KIND WITH NON-CLASSICAL PARAM. A 1ST STUDY



Sketch of the proof

Identity (by W. Van Assche)

∆M
β1,β2,c

(m1,m2)
(x) =

m1(β1 − β2 − m2)

β1 − β2

M
β1+1,β2,c

(m1−1,m2)
(x) −

m2(β2 − β1 − m1)

β1 − β2

M
β1,β2+1,c

(m1,m2−1)
(x),

Consequence:

∆NM
1−N,β2,c

(n1,n2)
(x) =

N∑

j=0

ajM
1−N+j ,β̃2,c

(n1−j ,n2,j )
(x).
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The Zeros

THE ZEROS

12th OPSFA – Honoring Professor Ahmed Fitouhi

R. S. Costas-Santos : MULT. MEIXNER ORTH. POL. OF SECOND KIND WITH NON-CLASSICAL PARAM. A 1ST STUDY



Some references
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FINALLY....
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