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1. Introduction7

The integral representation of special functions provides an alternative way to express these8

functions in terms of integrals involving other functions. Often they involve a weight function and a9

kernel function related to the specific special function being considered. The weight function appears as10

a factor in the integral and reflects the orthogonality property of the associated orthogonal polynomials,11

and the kernel function represents the additional dependence.12

The integral representation allows us to express special functions as infinite series or integrals13

involving some classical orthogonal polynomials. This connection arises from the fact that the14

orthogonality condition is satisfied by classical orthogonal polynomials naturally leads to the15

appearance of these polynomials in the integral representation of special functions. In this work,16

we are going to consider the Hermite polynomials.17

The hypergeometric functions, which have applications in many areas, including mathematical18

physics and combinatorics can be represented in terms of integrals involving other hypergeometric19

functions and classical orthogonal polynomials like the Jacobi, Hermite, and Laguerre polynomials,20

which can be expressed as hypergeometric series (see c.f. [1] and [7, §16.5]).21

For a detailed history of the subject of integral representations for hypergeometric series and basic22

hypergeometric functions (which is a natural extension of the hypergeometric series), see [3] and [4,23

Chapter 4].24

R. Sfaxi has established in [9], by means of a linear isomorphism, the so-called intertwining
operator on polynomials, a relationship between the ordinary Hermite polynomials and their analog
nonsingular and of Laguerre-Hahn with class zero. Among others, the author has put in value an
important linear functional, namely the generalized Hermite linear functional, denoted by GH(τ) of index
τ ∈ C, with τ 6= −n, n ≥ 1, where their moments are given by

(
GH(τ)

)
n := 〈GH(τ), xn〉 =


(τ + 1)2k

k!22k , if n = 2k,

0, if n = 2k + 1,
(1.1)

where (a)n is the Pochhammer symbol, defined as

(a)0 := 1, (a)k := a(a + 1) · · · (a + k− 1), a ∈ C \ {0}, k = 1, 2, 3, . . . ,

thus GH(τ) is symmetric and monic, i.e.,
(
GH(τ)

)
0 = 1.25
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Observe that setting τ = 0 in (1.1) we recover the Hermite linear functional, i.e., GH ≡ GH(0), that
is well-known by its integral representation

〈GH , p〉 = 1√
π

∫ ∞

−∞
p(x)e−x2

dx, p ∈ P. (1.2)

So we can write (
GH(τ)

)
n =

(τ + 1)n

(1)n
(GH)n, n = 0, 1, . . .

Note that the linear functional GH is classical since it is quasi-definite and satisfies the Pearson equation

G ′H + 2xGH = 0. (1.3)

Taking this into account the following result holds.26

Lemma 1.1. For any τ ∈ C, the linear functional GH(τ) fulfills the difference equation(
x2GH(τ)

)′′
+
(
2x(x2 − τ − 2)GH(τ)

)′
+
(
− 4x2 + (τ + 1)(τ + 2)

)
GH(τ) = 0.

Proof. Let τ ∈ C, if we define the linear functional E (τ) as

E (τ) :=
(

x2GH(τ)
)′′

+
(
2x(x2 − τ − 2)GH(τ)

)′
+
(
− 4x2 + (τ + 1)(τ + 2)

)
GH(τ).

Then, for n ≥ 0, one gets(
E (τ)

)
n = −2(n + 2)

(
GH(τ)

)
n+2 + (n + τ + 2)(n + τ + 1)

(
GH(τ)

)
n. (1.4)

Since GH(τ) is symmetric, then
(
E (τ)

)
2k+1 = 0, for every k ≥ 0. On the other hand, setting n = 2k in

(1.4) and taking into account (1.1), we get for k ≥ 0,(
E (τ)

)
2k = −4(k + 1)

(
GH(τ)

)
2k+2 + (2k + τ + 2)(2k + τ + 1)

(
GH(τ)

)
2k

= − (τ + 1)2k+2

k!22k +
(2k + 1 + τ + 1)(2k + τ + 1)(τ + 1)2k

k!22k

= 0.

Therefore
(
E (τ)

)
n = 0 for all n = 0, 1, . . . . Hence the result holds.27

Our purpose in this work is to provide integral representations for the linear functional GH(τ),
either on the real axis, or on the complex plane.
More precisely, the problem consists in to determinate a weight function GH(•; τ) such that

〈GH(τ), p〉 =
∫

Ω
p(x)GH(x; τ)dx, p ∈ P,

where Ω is an interval in the real line, or a contour in the complex plane.28

The paper is organized as follows. In the next section, some preliminaries and notation. In29

Sections 3 and 4, integral representations in the real line and in the complex plane, respectively, are30

given. As an application of the previous results, in Section 5, some new integral representations for the31

Euler Gamma function are given.32

2. preliminaries and notation33

Let P be the vector space of polynomials with complex coefficients and let P′ be its dual space.34

We denote by 〈u, f 〉 the action of the linear functional u ∈ P′ on the polynomial f ∈ P. In particular,35

we denote by (u)n := 〈u, xn〉, n ≥ 0, the moments of u.36
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Definition 2.1. A linear functional u is called symmetric if (u)2n+1 = 0, for all n = 0, 1, . . . , and it is called37

monic if (u)0 = 1.38

In fact, for any τ ∈ C, the linear functional GH(τ) is symmetric (see (1.1)) which allow us to39

suppose the weight function GH(•; τ) is even, i.e., it can be written as GH(x; τ) = U(|x|; τ), where40

U(•; τ) is a function defined on (0, ∞). In fact, this is a direct consequence of the following result.41

Lemma 2.2. Let L be a symmetric linear function having an integral representation. Then, there exists a
function U defined on (0, ∞) such that

〈L , p〉 =
∫ ∞

−∞
p(x)U(|x|)dx.

Proof. From the assumption there exists a function L, defined on (−∞, ∞), such that

〈L , p〉 =
∫ ∞

−∞
p(x)L(x)dx.

Let us introduce the following two functions, defined on (0, ∞), as follows:

U(x) =
L(x) + L(−x)

2
, V(x) =


L(x)− L(−x)

2x
, if x 6= 0,

0, if x = 0.

A straightforward calculation gives that L(x) = U(|x|) + xV(|x|), for all x ∈ R. Moreover, since
x2n+1V(|x|) is an odd function we have

(L )2n =
∫ ∞

−∞
x2nU(|x|)dx +

∫ ∞

−∞
x2n+1V(|x|)dx =

∫ ∞

−∞
x2nU(|x|)dx.

On the other hand, since L is symmetric and x2n+1U(|x|) is an odd function, we get

(L )2n+1 =
∫ ∞

−∞
x2n+1U(|x|)dx = 0.

Therefore, for any polynomial p ∈ P,

〈L , p〉 =
∫ ∞

−∞
p(x)U(|x|)dx.

42

Next result related with hypergeometric functions will be useful later.43

Lemma 2.3. [5,6] The following formulae hold:44

1. If <(α) > 0 and <(s) > 0, then

∫ ∞

0
tα−1

1F1(a1; b1; t)e−stdt =
Γ(α)

sα 2F1(a1, α; b1; 1/s). (2.1)

2. If <(c− a− b) > 0, then

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, (2.2)

where

2F1(a, b; c; z) :=
∞

∑
k=0

(a)k(b)k
(c)k

zk

k!
, 1F1(a; b; z) :=

∞

∑
k=0

(a)k
(b)k

zk

k!
.
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In the sequel we will denote by Hτ(x) the Hermite function (of degree τ), which can be represented
in terms of the confluent hypergeometric function 1F1 as follows [6]:

Hτ(x) = 2τ Γ( 1
2 )

Γ( 1−τ
2 )

1F1

(
−τ

2
;

1
2

; x2
)
+ 2τx

Γ(− 1
2 )

Γ(− τ
2 )

1F1

(
1− τ

2
;

3
2

; x2
)

. (2.3)

3. Integral representation on R45

In the following result, we present a new definite integration formulae involving the Hermite46

functions.47

Lemma 3.1. For any (z, τ) ∈ C2, with <(z) > −1, the following formulae hold:

∫ ∞

0
xzHτ(x)e−x2

dx =

√
π

2z−τ+1
Γ(z + 1)

Γ( z−τ
2 + 1)

, (3.1)

∫ ∞

−∞
|x|z Hτ(|x|)e−x2

dx =

√
π

2z−τ

Γ(z + 1)
Γ( z−τ

2 + 1)
. (3.2)

Proof. Since the function |x|νHτ(|x|)e−x2
is even, then it is enough to prove (3.1).48

Let us fix τ ∈ C, with <(τ) > −1. For any z ∈ C, with −1 < <(z) < <(τ), let us consider the
following integral:

Λ(z) :=
∫ ∞

0
xz Hτ(x)e−x2

dx.

Using (2.3), the previous integral can be written as

Λ(z) = 2τ Γ( 1
2 )

Γ( 1−τ
2 )

Π(z) + 2τ Γ(− 1
2 )

Γ(− τ
2 )

Ω(z), (3.3)

where

Π(z) :=
∫ ∞

0
xz

1F1

(
−τ

2
;

1
2

; x2
)

e−x2
dx,

Ω(z) :=
∫ ∞

0
xz+1

1F1

(
1− τ

2
;

3
2

; x2
)

e−x2
dx.

By changing the variable of integration, by setting t = x2, and using (2.1), with s = 1, α = (z + 1)/2,
a1 = −τ/2, and b1 = 1/2, we obtain

Π(z) =
1
2

Γ
(

z + 1
2

)
2F1

(
−τ

2
,

z + 1
2

;
1
2

; 1
)

.

Again, with (2.1), where s = 1, α = (z + 2)/2, a1 = (1− τ)/2, and b1 = 3/2, we get

Ω(z) =
1
2

Γ
(

z + 2
2

)
2F1

(
1− τ

2
,

z + 2
2

;
3
2

; 1
)

.

Since <(z) < <(τ), by using (2.2) Π(z) and Ω(z) can be written as

Π(z) =
Γ( z+1

2 )Γ( 1
2 )Γ(

τ−z
2 )

2Γ( 1+τ
2 )Γ(− z

2 )
,

Ω(z) =
Γ( z+2

2 )Γ( 3
2 )Γ(

τ−z
2 )

2Γ( 2+τ
2 )Γ( 1−z

2 )
.
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Therefore, taking into account Γ( 1
2 )

2 = −Γ(− 1
2 )Γ(

3
2 ) = π, the expression (3.3) can be rewritten as

follows:

Λ(z) =
2τ−1πΓ( τ−z

2 )

Γ(− z
2 )Γ(

1−z
2 )

(
U(z, τ)−U(z + 1, τ + 1)

)
,

where

U(z, τ) =
Γ( z+1

2 )Γ( 1−z
2 )

Γ( 1+τ
2 )Γ( 1−τ

2 )
.

Using the duplication formula

Γ(u)Γ(1− u) =
π

sin(πu)
,

a straightforward calculation leads to

U(z, τ) =
cos(π

2 τ)

cos(π
2 z)

, U(z + 1, τ + 1) =
sin(π

2 τ)

sin(π
2 z)

.

Then,

Λ(z) = −
2τπΓ( τ−z

2 )

Γ(− z
2 )Γ(

1−z
2 )

sin
(

π
2 (τ − z)

)
sin(πz)

,

so, by using the Gauss-Legendre multiplication formula,

Γ(u)Γ(u + 1
2 ) = 21−2u√π Γ(2u),

and, again, with the duplication formula, we get

Λ(z) =
√

π

2z−τ+1
Γ(z + 1)

Γ(1 + z−τ
2 )

.

For this proof we assumed the conditions −1 < <(z) < <(τ), then the integral Λ(z) converges49

exponentially to zero when τ → ∞. Hence, by analytic continuation, (3.3) is valid for each (τ, z) ∈ C2,50

with <(z) > −1.51

Remark 3.2. Note that the above result also covers the z = τ case. In fact, if τ =0, 1, . . . this identity52

represents the property of orthogonality for the monic Hermite polynomials.53

As a consequence we have the following result:54

Corollary 3.3. For any τ ∈ C, with <(τ) > −1, then the following formulae hold:

∫ ∞

0
x2n+τ Hτ(x)e−x2

dx =

√
π

22n+1
Γ(2n + τ + 1)

Γ(n + 1)
, (3.4)

∫ ∞

−∞
x2n|x|τ Hτ(|x|)e−x2

dx =

√
π

22n
Γ(2n + τ + 1)

Γ(n + 1)
. (3.5)

Theorem 3.4. For any τ ∈ C, with <(τ) > −1, then the linear functional GH(τ) has the following integral
representation:

〈GH(τ), p〉 = 1√
π Γ(τ + 1)

∫ ∞

−∞
p(x)|x|τ Hτ(|x|)e−x2

dx, p ∈ P, (3.6)

where Hτ is the Hermite function (of degree τ).55
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Proof. Due the equation (1.1) and corollary 3.3, then

(
GH(τ)

)
2n =

(τ + 1)2n

n!22n =
Γ(2n + τ + 1)

22nΓ(n + 1)Γ(τ + 1)

=
1√

π Γ(τ + 1)

∫ ∞

−∞
x2n|x|τ Hτ(|x|)e−x2

dx,

(
GH(τ)

)
2n+1 = 0 =

1√
π Γ(τ + 1)

∫ ∞

−∞
x2n+1|x|τ Hτ(|x|)e−x2

dx.

Therefore, one has

(
GH(τ)

)
n =

1√
π Γ(τ + 1)

∫ ∞

−∞
xn|x|τ Hτ(|x|)e−x2

dx, n = 0, 1, . . .

Consequently, for any polynomial p ∈ P,

〈GH(τ), p〉 = 1√
π Γ(τ + 1)

∫ ∞

−∞
p(x)|x|τ Hτ(|x|)e−x2

dx.

56

Observe that if we set n = 0 in (3.4) we get a new integral representation for the Euler Gamma
function. In fact, for any τ ∈ C, with <(τ) > −1,

Γ(τ + 1) =
2√
π

∫ ∞

0
xτ Hτ(x)e−x2

dx, (3.7)

Γ(τ + 1) =
1√
π

∫ ∞

−∞
|x|τ Hτ(|x|)e−x2

dx. (3.8)

4. Integral representation on the complex plane57

Theorem 4.1. For any τ ∈ C, the following identities hold:58

i) ∫
C1

ζ2n+1|ζ|τ Hτ(|ζ|)e−ζ2
dζ = 0, n = 0, 1, . . .

ii) For any n ∈ N, so that τ + 2n + 1 is not a negative integer, we have

∫
C1

ζ2n|ζ|τ Hτ(|ζ|)e−ζ2
dζ = −

√
π

22n
Γ(2n + τ + 1)

Γ(n + 1)
, n = 0, 1, . . .

where C1 is the following contour in the complex plane:59

C1

x

y

60

Proof. We deform C1 into a contour C̃1 consisting of two straight lines and a circle as follows:61
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C̃1

arg(ζ)=0

γ

x

y

62

where γ := {ζ ∈ C : =(ζ) > 0, |ζ| = ε}, being ε > 0.63

Now, for each integer n ≥ 0 and τ ∈ C, we define

In(τ) :=
∫

C̃1

ζn|ζ|τ Hτ(|ζ|)e−ζ2
dζ =

∫ ε

∞
ζn|ζ|τ Hτ(|ζ|)e−ζ2

dζ

+
∫

γ
ζn|ζ|τ Hτ(|ζ|)e−ζ2

dζ +
∫ −∞

−ε
ζn|ζ|τ Hτ(|ζ|)e−ζ2

dζ.

So, if <(τ) > −n− 1, after a direct computation, we get

lim
ε→0

∫ ε

∞
ζn|ζ|τ Hτ(|ζ|)e−ζ2

dζ = −
∫ ∞

0
xn+τ Hτ(x)e−x2

dx,

lim
ε→0

∫ −∞

−ε
ζn|ζ|τ Hτ(|ζ|)e−ζ2

dζ = −(−1)n
∫ ∞

0
xn+τ Hτ(x)e−x2

dx.

For the middle integral, we obtain∣∣∣ ∫
γ

ζn|ζ|τ Hτ(|z|)e−ζ2
dζ
∣∣∣ =

∣∣∣ ∫ π

0
εneinθετ Hτ(ε)e−ε2e2iθ

εieiθdθ
∣∣∣

≤ εn+<(τ)+1
∫ π

0
|Hτ(ε)|e−ε2 cos(2θ)dθ,

knowing that Hτ(0) = 2τ
√

π/Γ( 1−τ
2 ), it is straightforward to see that

lim
ε→0

∫
γ

ζn|ζ|τ Hτ(|ζ|)e−ζ2
dζ = 0.

Therefore, for each n ≥ 0 and τ ∈ C, such that <(τ) > −n− 1, we have

In(τ) = −
(
(−1)n + 1

) ∫ ∞

0
xn+τ Hτ(x)e−x2

dx.

Then I2n+1(τ) = 0 for all n ≥ 0. Notice that for the proof of i) we assumed <(τ) > −n− 1, but the
integral converges exponentially when τ → ∞, and therefore it exists for all τ. Hence i) holds by
analytic continuation for any τ ∈ C.
On the other hand, by using (3.4), it follows that

I2n(τ) = −
√

π

22n
Γ(2n + τ + 1)

Γ(n + 1)
.

Hence ii) holds, for the same reason already quoted and by analytic continuation of τ ∈ C, except64

when 2n + τ + 1 is a negative integer, where the function Γ is undefined.65

As a consequence, we have the following result.66

Theorem 4.2. For any τ ∈ C, with −τ 6∈ N, then the linear functional GH(τ) has the following integral
representation:

〈GH(τ), p〉 = − 1√
πΓ(τ + 1)

∫
C1

p(x)|x|τ Hτ(|x|)e−x2
dx, p ∈ P, (4.1)

where Hτ is the Hermite function (of degree τ).67
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Using an analog idea allows us to formulate another integral representation for the gamma68

function in the complex plane, by using a different contour.69

Theorem 4.3. For any τ ∈ C, with −τ 6∈ N, then the Euler’s Gamma function satisfies the following integral
representation:

Γ(τ + 1) =
2√

π(e2πiτ − 1)

∫
C

ζτ Hτ(ζ)e−ζ2
dζ, (4.2)

where C is the following contour in the complex plane:70

C

x

y

71

Proof. We deform C into a contour C̃ consisting of two straight lines and a circle as follows:72

C̃

arg(ζ)=0

arg(ζ)=2π

|ζ| = ε

x

y

73

We let
J(τ) =

∫
C̃

ζτ Hτ(ζ)e−ζ2
dζ

Then
J(τ) =

∫ ε

∞
ζτ Hτ(ζ)e−ζ2

dζ +
∫
|ζ|=ε

ζτ Hτ(ζ)e−ζ2
dζ +

∫ ∞

ε
ζτ Hτ(ζ)e−ζ2

dζ,

and if <(τ) > −1 in a direct way we obtain

lim
ε→0

∫ ε

∞
ζτ Hτ(ζ)e−ζ2

dζ = −
√

π

2
Γ(τ + 1),

lim
ε→0

∫ ∞

ε
ζτ Hτ(ζ)e−ζ2

dζ = e2πiτ
√

π

2
Γ(τ + 1).

For the middle integral we obtain∣∣∣ ∫
|ζ|=ε

ζτ Hτ(ζ)e−ζ2
dζ| =

∣∣∣∣∫ 2π

0
(εeiθ)τ Hτ(εeiθ)e−ε2e2iθ

εieiθdθ

∣∣∣∣
≤ ε<(τ)+1

∫ 2π

0
|Hτ(εeiθ)|e−ε2 cos(2θ)−θ

(
=(τ)+1

)
dθ,

thus
lim
ε→0

∫
|ζ|=ε

ζτ Hτ(ζ)e−ζ2
dζ = 0.
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Finally

J(τ) = (e2πiτ − 1)
√

π

2
Γ(τ + 1),

hence the result holds. In the proof we have assumed that <(τ) > −1, but the integral (4.2) converges74

exponentially at infinity, and therefore it exists for all τ. In fact, by analytic continuation the result is75

valid for every complex τ, except for the negative integers, where the denominator vanishes.76

In addition, from the last representation, we obtain the following one:

Γ(τ + 1) =
1

i
√

π sin(πτ)

∫
C
(−ζ)τ Hτ(ζ)e−ζ2

dζ.

In the last result we show a representation for the reciprocal of Γ(τ + 1).77

Theorem 4.4.
1

Γ(τ + 1)
= −iπ−

3
2

∫
C
(−ζ)−1−τ H−1−τ(ζ)e−ζ2

dζ.

This representation is valid for all τ and C is the same contour as in the previous theorem.78

Proof. By the last representation, one has

Γ(−τ) =
1

i
√

π sin(πτ)

∫
C
(−ζ)−1−τ H−1−τ(ζ)e−ζ2

dζ

=
Γ(τ + 1)Γ(−τ)

iπ
3
2

∫
C
(−ζ)−1−τ H−1−τ(ζ)e−ζ2

dζ.

This leads to the desired result.79

5. Conclusions80

We have obtained integral representations of a generalized linear Hermite functional, which is81

among the natural extensions of the linear Hermite functional, and using the fact this linear functional82

is symmetric, i.e., the odd moments associated with this functional are zero, and also the fact that some83

hypergeometric representations associated with the Hermite polynomials are known. Observe that84

this can be done for other symmetric classical orthogonal polynomials. Moreover, we have obtained an85

integral representation for the generalized linear Hermite functional in the complex plane, and from86

this integral representation, we are able to obtain a novel integral representation for the Euler Gamma87

function.88

Of course, this method can be applied not only to other (symmetric) classical orthogonal89

polynomials but to any other symmetric orthogonal polynomial sequence for which a hypergeometric90

representation is known for them. This is something we should do in order to obtain novel integral91

representations for other Special functions, for example we could consider some other generalization for92

the Hermite linear functional as well as some Laguerre-Hahn, or semi-classical, orthogonal polynomials93

(see e.g., [2,8] and the references therein).94
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