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THE BASICS
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Classical Orthogonal Polynomials

Let (Pn) be a polynomial sequence and u be a functional.

Property of orthogonality

〈u,PnPm〉 = d2
nδn,m.

Distributional equation:

D(φu) = ψu, degψ ≥ 1, deg φ ≤ 2.

Three-term recurrence relation:

xPn(x) = αnPn+1(x) + βnPn(x) + γnPn+1(x).

The weight function dµ(z) = ω(z) dz

〈u,P〉 =

∫
Γ
P(z) dµ(z), Γ ⊂ C, .
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1 Continuous classical orthogonal polynomials

d

dx
(φ(x)ω(x)) = ψ(x)ω(x),

2 ∆-classical orthogonal polynomials

∇(φ(x)ω(x)) = ψ(x)ω(x),

∆f (x) = f (x + 1)− f (x), ∇f (x) = f (x)− f (x − 1),

3 q-Hahn classical orthogonal polynomials

D1/q(φ(x)ω(x)) = ψ(x)ω(x),

Dqf (x) = f (qx)−f (x)
x(q−1) , x 6= 0, Dqf (0) = f ′(0),

x(s) = c1q
s + c2.
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Some families

Continuous Classical OP: Jacobi, Hermite, Laguerre and
Bessel.

∆-Classical OP: Hahn, Racah, Meixner, Krawtchouk, Charlier,
etc.

q-Classical OP: Askey Wilson, q-Racah, q-Hahn, Continuous
q-Hahn, Big q-Jacobi, q-Hermite, q-Laguerre,
Al-Salam-Chihara, Stieltjes-Wigert, etc.
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The Favard’s theorem

Let (pn)n∈N0 generated by the TTRR

xpn(x) = pn+1(x) + βnpn(x) + γnpn−1(x).

Favard’s theorem

If γn 6= 0 ∀n ∈ N then there exists a moments functional
L0 : P[x ]→ C so that

L0(pnpm) = rnδn,m

with rn a non-vanishing normalization factor.
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Degenerate version of Favard’s theorem

Theorem

If there exists N so that γN = 0, then (pn) is a MOPS with respect
to

〈f , g〉 = L0(fg) +
∑
j∈A

L1(T (N)(f )T (N)(g)).
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THE RELEVANT FAMILIES
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The Classical Hypergeometric Orthogonal Polynomials
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The Classical basic Hypergeometric Orth. Polyn.

The scheme is too big to put it on here,
let’s go outside to see it ;)
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SOME RESULTS
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Characterization Theorems. The continuous version

Let (Pn) be an OPS with respect to ω. The following statements
are equivalent:

1 Pn is classical, i.e. (φ(x)ω(x))′ = ψ(x)ω(x).

2 (P ′n+1) is a OPS.

3 (P
(k)
n+k) is a OPS for any integer k .

4 (First structure relation)

φ(x)P ′n(x) = α̂nPn+1(x) + β̂nPn(x) + γ̂nPn−1(x).

5 (Second structure relation)

Pn(x) = α̃nP
′
n+1(x) + β̃nP

′
n(x) + γ̃nP

′
n−1(x).

6 (Eigenfunctions of SODE)

φ(x)P ′′(x) + ψ(x)P ′(x) + λP(x) = 0.
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Characterization Theorem (cont.)

Let (Pn) be an OPS with respect to ω. The following statements
are equivalent:

1 Pn is classical, i.e. (φ(x)ω(x))′ = ψ(x)ω(x).

2 The Rodrigues Formula for Pn

Pn(x) =
Bn

ω(x)

dn

dxn
(
φn(x)ω(x)), Bn 6= 0.

3 φ(x)(PnPn−1)′(x) =
gnP

2
n(x)− (ψ(x)− φ′(x))Pn(x)Pn−1(x) + hnP

2
n−1(x)
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Hypergeometric and basic hypergeometric representations

The continuous and discrete COP can be written in terms of

rFs

(
a1, a2, . . . , ar
b1, b2, . . . , bs

∣∣∣∣ z) =
∑
k≥0

(a1)k(a2)k . . . (ar )k
(b1)k(b2)k . . . (bs)k

zk

k!
.

The q-discrete COP can be written in terms of

rϕs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣ z) =
∑
k≥0

(a1; q)k . . . (ar ; q)k
(b1; q)k . . . (bs ; q)k

(
(−1)kq(k

2)
)1+s−r zk

(q; q)k
.

(a)k = a(a + 1) · · · (a + k − 1)

(a; q)k = (1− a)(1− aq) · · · (1− aqk−1)
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The Connection Problem

The connection problem is the problem of finding the coefficients
ck;n in the expansion of Pn in terms of another sequence of
polynomials Rk , i.e.

Pn(x) =
n∑

k=0

ck;nRk(x).

We are interested into obtaining such coefficients for Classical
orthogonal polynomials in a enough ‘general’ context.
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The example. Big q-Jacobi polynomials

Again let’s go to File 2 :D
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FINALLY....

THANK YOU
FOR YOUR ATTENTION !!
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