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THE CONSTRUCTION
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They satisfy this Sturm-Liouville SODE

SODE

(pn) fulfill the Second Order Differential Equation

φ(x)y ′′(x) + ψ(x)y ′(x) + λy(x) = 0.

which, for the COP, is equivalent to

(
φ(x)ρ(x)y ′(x)

)′

+ λρ(x)y(x) = 0.

All this is possible because there exist a weight function ρ(x) and
an interval (a, b) ⊆ R so that

∫ b

a

pn(x)pm(x)ρ(x)dx = κnδn,m.
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From the continuous to the uniform discrete world

The easiest way to discretize the SLE over a uniform lattice. In
order to do that we divide the interval (a,b) in subintervals of
length h, and we approximate

y ′ ∼
1

2

(
y(x + h)− y(h)

h
+

y(x)− y(x − h)

h

)

y ′′ ∼
1

h

(
y(x + h)− y(h)

h
−

y(x)− y(x − h)

h

)
.

After some corrections we get

φ(x)∆∇y(x) + ψ(x)∆y(x) + λy(x) = 0.

here

∆f (x) = f (x + 1)− f (x), ∇f (x) = f (x)− f (x − 1).
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From the continuous to the non uniform discrete world

In this case we discretize the SLE over a non uniform lattice
{x(s)} with

y ′(x) ∼
1

2

(
y(x(s + h))− y(x(s))

x(x + h)− x(s)
+

y(x(s))− (x(s − h)

x(s)− x(s − h))

)
,

and

y
′′
(x) ∼

1

x(s + h/2) − x(s − h/2)

(

y(x(s + h)) − y(x(s))

x(x + h) − x(s)
−

y(x(s)) − y(x(s − h))

x(s) − x(s − h))

)

.

We are taking the points x(s ± h), and x(s ± h/2)!!!. Again, after
some corrections, we get

φ(s)
∆

∆x(s − 1/2)

∇

∇x(s)
y(s) + ψ(s)

∆

∆x(s)
y(s) + λy(s) = 0.

NIST, 2015

R. S. Costas-Santos : Discovering Discrete COP: First Steps



THE BASICS
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Classical Orthogonal Polynomials

Let (Pn) be a polynomial sequence and u be a functional.

Property of orthogonality

〈u,PnPm〉 = d2
nδn,m.

Distributional equation:

D(φu) = ψu, degψ ≥ 1, deg φ ≤ 2.

Three-term recurrence relation:

xPn(x) = αnPn+1(x) + βnPn(x) + γnPn+1(x).

The weight function dµ(z) = ω(z) dz

〈u,P〉 =

∫

Γ
P(z) dµ(z), Γ ⊂ C, .
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1 Continuous classical orthogonal polynomials

d

dx
(φ(x)ω(x)) = ψ(x)ω(x),

2 ∆-classical orthogonal polynomials

∇(φ(x)ω(x)) = ψ(x)ω(x),

∆f (x) = f (x + 1)− f (x), ∇f (x) = f (x)− f (x − 1),

3 q-Hahn classical orthogonal polynomials

∆[(φ(s)ω(s)]

∆x(s − 1/2)
= ψ(s)ω(s),

x(s) = c1q
s + c2q

−s + c3.
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The Favard’s theorem

Let (pn)n∈N0 generated by the TTRR

xpn(x) = pn+1(x) + βnpn(x) + γnpn−1(x).

Favard’s theorem

If γn 6= 0 ∀n ∈ N then there exists a moments functional
L0 : P[x ] → C so that

L0(pnpm) = rnδn,m

with rn a non-vanishing normalization factor.
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THE RELEVANT FAMILIES
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The Classical Hypergeometric Orthogonal Polynomials

Wilson Racah

Cont. Dual Hahn Cont. Hahn Hahn Dual Hahn

Meixner-Pollaczek Jacobi Meixner Krawchuk

laguerre Charlier

Hermite

F

F F

F
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The Classical basic Hypergeometric Orth. Polyn.

The scheme is too big to put it on here,
let’s go outside to see it ;)
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SOME RESULTS
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Characterization Theorems. The continuous version

Let (Pn) be an OPS with respect to ω. The following statements
are equivalent:

1 Pn is classical, i.e. (φ(x)ω(x))′ = ψ(x)ω(x).

2 (P ′
n+1) is a OPS.

3 (P
(k)
n+k

) is a OPS for any integer k .

4 (First structure relation)

φ(x)P ′
n(x) = α̂nPn+1(x) + β̂nPn(x) + γ̂nPn−1(x).

5 (Second structure relation)

Pn(x) = α̃nP
′
n+1(x) + β̃nP

′
n(x) + γ̃nP

′
n−1(x).

6 (Eigenfunctions of SODE)

φ(x)P ′′(x) + ψ(x)P ′(x) + λP(x) = 0.
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Characterization Theorem (cont.)

Let (Pn) be an OPS with respect to ω. The following statements
are equivalent:

1 Pn is classical, i.e. (φ(x)ω(x))′ = ψ(x)ω(x).

2 The Rodrigues Formula for Pn

Pn(x) =
Bn

ω(x)

dn

dxn
(
φn(x)ω(x)), Bn 6= 0.

3 φ(x)(PnPn−1)
′(x) =

gnP
2
n (x)− (ψ(x) − φ′(x))Pn(x)Pn−1(x) + hnP

2
n−1(x)
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Hypergeometric and basic hypergeometric representations

The continuous and discrete COP can be written in terms of

rFs

(
a1, a2, . . . , ar
b1, b2, . . . , bs

∣∣∣∣ z
)

=
∑

k≥0

(a1)k(a2)k . . . (ar )k
(b1)k(b2)k . . . (bs)k

zk

k!
.

The q-discrete COP can be written in terms of

rϕs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣ z
)

=
∑

k≥0

(a1; q)k . . . (ar ; q)k
(b1; q)k . . . (bs ; q)k

(
(−1)kq(

k

2)
)1+s−r zk

(q; q)k
.

(a)k = a(a + 1) · · · (a + k − 1)

(a; q)k = (1− a)(1− aq) · · · (1− aqk−1)
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The Connection Problem

The connection problem is the problem of finding the coefficients
ck;n in the expansion of Pn in terms of another sequence of
polynomials Rk , i.e.

Pn(x) =

n∑

k=0

ck;nRk(x).

We are interested into obtaining such coefficients for Classical
orthogonal polynomials in a enough ‘general’ context.
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The example. Big q-Jacobi polynomials

Again let’s go to File 2 :D
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FINALLY....

THANK YOU

FOR YOUR ATTENTION !!
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