CARMA SEMINAR 16 THFEB 2016

WHERE IS ALCALÁ DE HENARES (UNESCO'S WORLD HERITAGE SITES)
THE CITY WHERE CERVANTES WAS BORN.. HE WROTE THE QUIJOTE

WHERE IS ALCALÁ DE HENARES (UNESCO'S WORLD HERITAGE SITES)

THE CITY WHERE CERVANTES WAS BORN.. HE WROTE THE QUIJOTE

WHERE IS ALCALÁ DE HENARES (UNESCO'S WORLD HERITAGE SITES)
THE CITY WHERE CERVANTES WAS BORN.. HE WROTE THE QUIJOTE

WHERE IS ALCALÁ DE HENARES (UNESCO'S WORLD HERITAGE SITES)
THE CITY WHERE CERVANTES WAS BORN.. HE WROTE THE QUIJOTE

WHERE IS ALCALÁ DE HENARES (UNESCO'S WORLD HERITAGE SITES)
THE CITY WHERE CERVANTES WAS BORN.. HE WROTE THE QUIJOTE

WHERE IS ALCALÁ DE HENARES (UNESCO'S WORLD HERITAGE SITES)
THE CITY WHERE CERVANTES WAS BORN.. HE WROTE THE QUIJOTE

OUTLINE

* BASICS
* COP
* THE COP SCHEME
* Q-COP
* THE Q-COP SCHEME
* THE AS POL.
subtra the
theorem

a

m ऊゃ $\frac{d t}{}$

- Let \mathbf{u} be a linear functional.
- If \mathbf{u} fulfills the distributional equation

$$
\mathcal{D}(\phi \mathbf{u})=\psi \mathbf{u}, \quad \operatorname{deg} \psi \leq 1, \operatorname{deg} \phi \leq 2
$$

- Property of orthogonality: $\left\langle\mathbf{u}, P_{n} P_{m}\right\rangle=d_{n}^{2} \delta_{n, m}$ Three-term recurrence relation:

$$
x P_{n}(x)=P_{n+1}(x)+\beta_{n} P_{n}(x)+\gamma_{n} P_{n-1}(x)
$$

- Integral representation with a weight function

$$
\langle\mathbf{u}, P\rangle=\int_{\Gamma} P(z) d \mu(z), \quad \Gamma \subset \mathbb{C}
$$

THE CHARACTERIZATION THEOREM OF COP

Characterization Theorems. The continuous version

Let $\left(P_{n}\right)$ be an OPS with respect to ω. The following statements are equivalent:
(1) P_{n} is classical, i.e. $(\phi(x) \omega(x))^{\prime}=\psi(x) \omega(x)$.
(2) $\left(P_{n+1}^{\prime}\right)$ is a OPS.
(3) $\left(P_{n+k}^{(k)}\right)$ is a OPS for any integer k.
(C) (First structure relation)

$$
\phi(x) P_{n}^{\prime}(x)=\widehat{\alpha}_{n} P_{n+1}(x)+\widehat{\beta}_{n} P_{n}(x)+\widehat{\gamma}_{n} P_{n-1}(x) .
$$

(0) (Second structure relation)

$$
P_{n}(x)=\widetilde{\alpha}_{n} P_{n+1}^{\prime}(x)+\widetilde{\beta}_{n} P_{n}^{\prime}(x)+\widetilde{\gamma}_{n} P_{n-1}^{\prime}(x) .
$$

© (Eigenfunctions of SODE)

$$
\phi(x) P^{\prime \prime}(x)+\psi(x) P^{\prime}(x)+\lambda P(x)=0 .
$$

CLASSICAL OP

The Classical Hypergeometric Orthogonal Polynomials

Representation of the Classical OP

Hypergeometric and basic hypergeometric representations

The continuous and discrete COP can be written in terms of

$$
{ }_{r} F_{s}\left(\left.\begin{array}{ll}
a_{1}, & a_{2}, \ldots, a_{r} \\
b_{1}, & b_{2}, \ldots, b_{s}
\end{array} \right\rvert\, z\right)=\sum_{k \geq 0} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \ldots\left(a_{r}\right)_{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \ldots\left(b_{s}\right)_{k}} \frac{z^{k}}{k!}
$$

The q-discrete COP can be written in terms of
${ }_{r} \varphi_{s}\left(\left.\begin{array}{c}a_{1}, \ldots, a_{r} \\ b_{1}, \ldots, b_{s}\end{array} \right\rvert\, z\right)=\sum_{k \geq 0} \frac{\left(a_{1} ; q\right)_{k} \ldots\left(a_{r} ; q\right)_{k}}{\left(b_{1} ; q\right)_{k} \ldots\left(b_{s} ; q\right)_{k}}\left((-1)^{k} q^{\left.\binom{k}{2}\right)^{1+s-r}} \frac{z^{k}}{(q ; q)_{k}}\right.$.
$(a)_{k}=a(a+1) \cdots(a+k-1)$
$(a ; q)_{k}=(1-a)(1-a q) \cdots\left(1-a q^{k-1}\right)$

Laguerre and Jacobi Polynomials

$$
\begin{gathered}
L_{n}^{\alpha}(x)=\frac{(-1)^{n} \Gamma(n+\alpha+1)}{\Gamma(\alpha+1)}{ }_{1} \mathrm{~F}_{1}\left(\left.\begin{array}{c}
-n \\
\alpha+1
\end{array} \right\rvert\, x\right) \\
P_{n}^{\alpha, \beta}(x)=\frac{2^{n}(\alpha+1)_{n}}{(n+\alpha+\beta+1)_{n}}{ }_{2} \mathrm{~F}_{1}\left(\left.\begin{array}{c}
-n, n+\alpha+\beta+1 \\
\alpha+1
\end{array} \right\rvert\, \frac{1-x}{2}\right) .
\end{gathered}
$$

α_{n}	1	1	1
β_{n}	0	$2 n+\alpha+1$	$\frac{\beta^{2}-\alpha^{2}}{(2 n+\alpha+\beta)(2 n+2+\alpha+\beta)}$
γ_{n}	$\frac{n}{2}$	$n(n+\alpha)$	$\frac{4 n(n+\alpha)(n+\beta)(n+\alpha+\beta)}{(2 n+\alpha+\beta-1)(2 n+\alpha+\beta)^{2}(2 n+\alpha+\beta+1)}$

DEGENERATE FAVARD'S RESULT

DEGENERATE FAVARD'S RESULT

The Favard's theorem

Let $\left(p_{n}\right)_{n \in \mathbb{N}_{0}}$ generated by the TTRR

$$
x p_{n}(x)=p_{n+1}(x)+\beta_{n} p_{n}(x)+\gamma_{n} p_{n-1}(x)
$$

Favard's theorem

If $\gamma_{n} \neq 0 \forall n \in \mathbb{N}$ then there exists a moments functional
$\mathscr{L}_{0}: \mathbb{P}[x] \rightarrow \mathbb{C}$ so that

$$
\mathscr{L}_{0}\left(p_{n} p_{m}\right)=r_{n} \delta_{n, m}
$$

with r_{n} a non-vanishing normalization factor.

DEGENERATE FAVARD'S RESULT

The Favard's theorem

Let $\left(p_{n}\right)_{n \in \mathbb{N}_{0}}$ generated by the TTRR

$$
x p_{n}(x)=p_{n+1}(x)+\beta_{n} p_{n}(x)+\gamma_{n} p_{n-1}(x)
$$

Favard's theorem

If $\gamma_{n} \neq 0 \forall n \in \mathbb{N}$ then there exists a moments functional
$\mathscr{L}_{0}: \mathbb{P}[x] \rightarrow \mathbb{C}$ so that

$$
\mathscr{L}_{0}\left(p_{n} p_{m}\right)=r_{n} \delta_{n, m}
$$

with r_{n} a non-vanishing normalization factor.

Theorem

If there exists N so that $\gamma_{N}=0$, then $\left(p_{n}\right)$ is a MOPS with respect to

$$
\langle f, g\rangle=\mathscr{L}_{0}(f g)+\sum_{j \in \mathscr{A}} \mathscr{L}_{1}\left(\mathscr{T}^{(N)}(f) \mathscr{T}^{(N)}(g)\right) .
$$

DEGENERATE FAVARD'S RESULT

The Favard's theorem

Let $\left(p_{n}\right)_{n \in \mathbb{N}_{0}}$ generated by the TTRR

$$
x p_{n}(x)=p_{n+1}(x)+\beta_{n} p_{n}(x)+\gamma_{n} p_{n-1}(x)
$$

Favard's theorem

If $\gamma_{n} \neq 0 \forall n \in \mathbb{N}$ then there exists a moments functional $\mathscr{L}_{0}: \mathbb{P}[x] \rightarrow \mathbb{C}$ so that

$$
\mathscr{L}_{0}\left(p_{n} p_{m}\right)=r_{n} \delta_{n, m}
$$

with r_{n} a non-vanishing normalization factor.

Journal of Computational and Applied Mathematics 225 (2009) 440-451		
	Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam	

Extensions of discrete classical orthogonal polynomials beyond the orthogonality
R.S. Costas-Santos ${ }^{\text {a,* }}$, J.F. Sánchez-Lara ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, University of California, South Hall, Room 6607 Santa Barbara, CA 93106, USA
${ }^{\text {b }}$ Universidad Politécrica de Madrid, Escuela Técnica Superior de Arquitectura, Departamento de Matemática Aplicada, Avda Juan de Herrera, 4. 28040 Madrid, Spain

Degenerate version of Favard's theorem

Theorem

If there exists N so that $\gamma_{N}=0$, then $\left(p_{n}\right)$ is a MOPS with respect to

$$
\langle f, g\rangle=\mathscr{L}_{0}(f g)+\sum_{j \in \mathscr{A}} \mathscr{L}_{1}\left(\mathscr{T}^{(N)}(f) \mathscr{T}^{(N)}(g)\right)
$$

DEGENERATE FAVARD'S RESULT

The Favard's theorem

Let $\left(p_{n}\right)_{n \in \mathbb{N}_{0}}$ generated by the TTRR

$$
x p_{n}(x)=p_{n+1}(x)+\beta_{n} p_{n}(x)+\gamma_{n} p_{n-1}(x)
$$

Favard's theorem

If $\gamma_{n} \neq 0 \forall n \in \mathbb{N}$ then there exists a moments functional
$\mathscr{L}_{0}: \mathbb{P}[x] \rightarrow \mathbb{C}$ so that

$$
\mathscr{L}_{0}\left(p_{n} p_{m}\right)=r_{n} \delta_{n, m}
$$

with r_{n} a non-vanishing normalization factor.

	Available online at www.sciencedirect.com \because ScienceDirect	Journal of Approximation Theory
ELSEVIER	Journal of Approximation Theory 163 (2011) 1246-1268	
		.elsevier.com/locate/jat

Full length article
Orthogonality of q-polynomials for non-standard

parameters

R.S. Costas-Santos ${ }^{\text {a,* }}$, J.F. Sánchez-Lara ${ }^{\text {b }}$

Journal of Computational and Applied Mathematics 225 (2009) 440-451		
	Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam	

Extensions of discrete classical orthogonal polynomials beyond the orthogonality
R.S. Costas-Santos ${ }^{\mathrm{a}, *}$, J.F. Sánchez-Lara ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Department of Mathematics, University of California, South Hall, Room 6607 Santa Barbara, CA 93106, USA
${ }^{\text {b }}$ Universidad Politécrica de Madrid, Escuela Técnica Superior de Arquitectura, Departamento de Matemática Aplicada, Avda Juan de Herrera,
Universidad Politécrica
4. 28040 Madrid, Spain

Degenerate version of Favard's theorem

Theorem

If there exists N so that $\gamma_{N}=0$, then $\left(p_{n}\right)$ is a MOPS with respect to

$$
\langle f, g\rangle=\mathscr{L}_{0}(f g)+\sum_{j \in \mathscr{A}} \mathscr{L}_{1}\left(\mathscr{T}^{(N)}(f) \mathscr{T}^{(N)}(g)\right)
$$

Q-COP $=$ Q-POLYNOMIALS

-The function $\omega(s$ fulfills a Pearson-type difference eq.:

$$
\phi(s+1) \omega(s+1)-\phi(s) \omega(s)=(x(s+1 / 2)-x(s-1 / 2)) \psi(s)
$$

-The q-polynomials satisfy, in general, a property of orthogonality

$$
\langle\mathbf{u}, P\rangle=\int_{a}^{b} P(z) \omega(z) d_{q} z
$$

The q-integral is defined by

$$
\begin{gathered}
\int_{0}^{z} f(t) d_{q} t:=z(1-q) \sum_{n=0}^{\infty} f\left(q^{n} z\right) q^{n}, \quad 0<q<1 \\
\int_{a}^{b} f(t) d_{q} t=b(1-q) \sum_{n=0}^{\infty} f\left(b q^{n}\right) q^{n}-a(1-q) \sum_{n=0}^{\infty} f\left(a q^{n}\right) q^{n},
\end{gathered}
$$

SCHEME

OF

BASIC HYPERGEOMETRIC

ORTHOGONAL POLYNOMIALS

THE BASIC HYPERGEOMETRIC OP

A GOOD REFERENCE ABOUT Q-COP

Hypergeometric Orthogonal Polynomials and Their q-Analogues

With a Foreword by Tom H. Koornwinder

Springer

AND SOME PICTURES

DEGENERATE VERSION OF FAVARD'S RESULT IN THE 'Q-WORLD'

The Askey-Wilson polynomials case

$$
\frac{\gamma_{n}}{1-q^{n}}=\frac{\left(1-a b q^{n-1}\right)\left(1-a c q^{n-1}\right)\left(1-a d q^{n-1}\right)\left(1-b c q^{n-1}\right)\left(1-b d q^{n-1}\right)\left(1-c d q^{n-1}\right)}{4\left(1-a b c d q^{2 n-3}\right)\left(1-a b c d q^{2 n-2}\right)^{2}\left(1-a b c d q^{2 n-1}\right)}
$$

THE SUPPORT OF THE MEASURE AND THE JACOBI MATRIX

Taking into account the TTRR

$$
x P_{n}(x)=P_{n+1}(x)+\beta_{n} P_{n}(x)+\gamma_{n} P_{n-1}(x)
$$

one constructs the Jacobi matrix

$$
J=\left(\begin{array}{cccccc}
\beta_{0} & 1 & 0 & 0 & 0 & \cdots \\
\gamma_{1} & \beta_{1} & 1 & 0 & 0 & \cdots \\
0 & \gamma_{2} & \beta_{2} & 1 & 0 & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

The spectrum of the N -by- N truncated Jacobi matrix are the zeros of $\mathrm{P}_{\mathrm{N}}(\mathrm{x})$ for all N .

14.24 Al-Salam-Carlitz I

THE AL-SALAM-CARLITZ POLYNOMIALS

In this case $\phi(x)=(x-1)(x-a)$
 For $a, q \in \mathbb{C}, a \neq 1,0<|q|<1$

Basic Hypergeometric Representation

$$
U_{n}^{(a)}(x ; q)=(-a)^{n} q^{\left(\frac{n}{2}\right)}{ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-n}, x^{-1} \\
0
\end{array} ; q, \frac{q x}{a}\right) .
$$

Orthogonality Relation

$$
\begin{aligned}
& \int_{a}^{1}\left(q x, a^{-1} q x ; q\right)_{\infty} U_{m}^{(a)}(x ; q) U_{n}^{(a)}(x ; q) d_{q} x \\
& =(-a)^{n}(1-q)(q ; q)_{n}\left(q, a, a^{-1} q ; q\right)_{\infty} q^{\binom{n}{2}} \delta_{m n}, \quad a<0 .
\end{aligned}
$$

Recurrence Relation

$x U_{n}^{(a)}(x ; q)=U_{n+1}^{(a)}(x ; q)+(a+1) q^{n} U_{n}^{(a)}(x ; q)-a q^{n-1}\left(1-q^{n}\right) U_{n-1}^{(a)}(x ; q)$.

$a=1+I, q=0.7 \exp (\pi I / 4)$

$a=1, q=\underset{\mathbf{1} 7}{0.7} \exp (\pi I / 4)$

AL-SALAM-CARLITZ POLYNOMIALS. A GENERAL STUDY

The lattice $\left\{q^{k}: k \in \mathbb{N}_{0}\right\} \cup\left\{(1+i) q^{k}: k \in \mathbb{N}_{0}\right\}$ with $q=0.8 \exp (\pi i / 6)$.

14.24 Al-Salam-Carlitz I

THE AL-SALAM-CARLITZ POLYNOMIALS

In this case $\phi(x)=(x-1)(x-a)$
 For $a, q \in \mathbb{C}, a \neq 1,0<|q|<1$

Basic Hypergeometric Representation

$$
U_{n}^{(a)}(x ; q)=(-a)^{n} q^{\left(\frac{n}{2}\right)}{ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-n}, x^{-1} \\
0
\end{array} ; q, \frac{q x}{a}\right) .
$$

Orthogonality Relation

$$
\begin{aligned}
& \int_{a}^{1}\left(q x, a^{-1} q x ; q\right)_{\infty} U_{m}^{(a)}(x ; q) U_{n}^{(a)}(x ; q) d_{q} x \\
& =(-a)^{n}(1-q)(q ; q)_{n}\left(q, a, a^{-1} q ; q\right)_{\infty} q^{\binom{n}{2}} \delta_{m n}, \quad a<0 .
\end{aligned}
$$

Recurrence Relation

$x U_{n}^{(a)}(x ; q)=U_{n+1}^{(a)}(x ; q)+(a+1) q^{n} U_{n}^{(a)}(x ; q)-a q^{n-1}\left(1-q^{n}\right) U_{n-1}^{(a)}(x ; q)$.

$a=1+I, q=0.7 \exp (\pi I / 4)$

$a=1, q=\underset{\mathbf{1} 7}{0.7} \exp (\pi I / 4)$

AL-SALAM-CARLITZ POLYNOMIALS. A GENERAL STUDY

The lattice $\left\{q^{k}: k \in \mathbb{N}_{0}\right\} \cup\left\{(1+i) q^{k}: k \in \mathbb{N}_{0}\right\}$ with $q=0.8 \exp (\pi i / 6)$.

14.24 Al-Salam-Carlitz I

THE AL-SALAM-CARLITZ POLYNOMIALS

In this case $\phi(x)=(x-1)(x-a)$
 For $a, q \in \mathbb{C}, a \neq 1,0<|q|<1$

Basic Hypergeometric Representation

$$
U_{n}^{(a)}(x ; q)=(-a)^{n} q^{\left(\frac{n}{2}\right)}{ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-n}, x^{-1} \\
0
\end{array} ; q, \frac{q x}{a}\right) .
$$

Orthogonality Relation

$$
\begin{aligned}
& \int_{a}^{1}\left(q x, a^{-1} q x ; q\right)_{\infty} U_{m}^{(a)}(x ; q) U_{n}^{(a)}(x ; q) d_{q} x \\
& =(-a)^{n}(1-q)(q ; q)_{n}\left(q, a, a^{-1} q ; q\right)_{\infty} q^{\binom{n}{2}} \delta_{m n}, \quad a<0 .
\end{aligned}
$$

Recurrence Relation

$x U_{n}^{(a)}(x ; q)=U_{n+1}^{(a)}(x ; q)+(a+1) q^{n} U_{n}^{(a)}(x ; q)-a q^{n-1}\left(1-q^{n}\right) U_{n-1}^{(a)}(x ; q)$.

$a=1+I, q=0.7 \exp (\pi I / 4)$

$a=1, q=\underset{\mathbf{1} 7}{0.7} \exp (\pi I / 4)$

AL-SALAM-CARLITZ POLYNOMIALS. A GENERAL STUDY

The lattice $\left\{q^{k}: k \in \mathbb{N}_{0}\right\} \cup\left\{(1+i) q^{k}: k \in \mathbb{N}_{0}\right\}$ with $q=0.8 \exp (\pi i / 6)$.

SOME REFERENCES

Some References

- (with J.F. Sánchez-Lara) Extensions of discrete classical orthogonal polynomials beyond the orthogonality. J. Comput. Appl. Math. 225 (2009), no. 2, 440-451
- (with F. Marcellán) q-Classical orthogonal polynomial: A general difference calculus approach. Acta Appl. Math. 111 (2010), no. 1, 107-128
- (with J.F. Sánchez-Lara) Orthogonality of q-polynomials for non-standard parameters. J. Approx. Theory 163 (2011), no. 9, 1246-1268
- (with F. Marcellán) The complementary polynomials and the Rodrigues operator of classical orthogonal polynomials. Proc. Amer. Math. Soc. 140 (2012), no. 10, 3485-3493

