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Classical Orthogonal polynomials

•Let u be a linear functional.
•If u fulfills the distributional equation 
 

•Property of orthogonality: 
Three-term recurrence relation: 
 

•Integral representation with a weight function

D(�u) =  u, deg  1, deg �  2

hu, PnPmi = d2n�n,m

xPn(x) = Pn+1(x) + �nPn(x) + �nPn�1(x)

dµ(z) = !(z) dzhu, P i =
Z

�
P (z) dµ(z), � ⇢ C.



The weight function and the Favard's result

•The function         fulfills a Pearson-type difference eq.: 
 

•The q-polynomials satisfy, in general, a property of 
orthogonality  
 

•Degenerate Favard's result: some gamma-coefficients of the 
TTRR are zero.   

!(s)

�(s+ 1)!(s+ 1)� �(s)!(s) =
�
x(s+ 1/2)� x(s� 1/2)

�
 (s)

hu, P i =
Z b

a
P (z)!(z) dqz

Orthogonality of q-polynomials for nonstandard parameters (with J. 
F. Sanchez-Lara) J. Approx. Theory 163 (2011), no. 9, 1246–1268.



The support of  the measure and the Jacobi Matrix

Taking into account the TTRR 

 
one constructs the Jacobi matrix   
 
 
 
 
 
The spectrum of the N-by-N truncated Jacobi matrix 
are the zeros of PN(x) for all N.

xPn(x) = Pn+1(x) + �nPn(x) + �nPn�1(x)

J =

0
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�0 1 0 0 0 · · ·
�1 �1 1 0 0 · · ·
0 �2 �2 1 0 · · ·
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Scheme  
of  

The Basic Hypergeometric OP
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The big q-Jacobi polynomials

In this case                                         
For  

 
 

9aq = 1 + I, cq = 1� I, q = 0.7

�(x) = (x� aq)(x� cq)/q
a, b, c 2 C, a 6= c, 0 < |q| < 1

aq = 1 + I, cq = 1� I, q = 0.7
Krall. Mass point at 1+I



The Al-Salam-Carlitz polynomials

In this case                                          
For  

 
 

10

�(x) = (x� 1)(x� a)
a, q 2 C, a 6= 1, 0 < |q| < 1

a = 1 + I, q = 0.7 exp(⇡I/4) a = 1, q = 0.7 exp(⇡I/4)



Open problems

•Obtain ‘the minimal’ weight function for all the relevant 
families of q-polynomials. 

•Obtain the behavior of the zeros of the Krall-type OP, as 
well the analytic properties when the mass we add is 
located in the complex plane. 

•Give the orthogonality of the relevant families for the 
‘bad cases’.
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