q-Polynomials. Orthogonality in the complex plane

Roberto Costas Santos Universidad de Alcalá

Joint work with H. Cohl, A. Soria-Lorente and F. Marcellan

[^0]
Outline

1. The q-polynomials

* Classical Orthogonal Polynomials
* The support of the measure and the Jacobi Matrix
* q-polynomials. The relevant families

2. The examples

* The big q-Jacobi polynomials
* The Al-Salam-Carlitz polynomials

Outline

1. The q-polynomials

* Classical Orthogonal Polynomials
* The support of the measure and the Jacobi Matrix
* q-polynomials. The relevant families

2. The examples

* The big q-Jacobi polynomials
* The Al-Salam-Carlitz polynomials

Classical Orthogonal polynomials

- Let u be a linear functional.
- If \mathbf{u} fulfills the distributional equation

$$
\mathcal{D}(\phi \mathbf{u})=\psi \mathbf{u}, \quad \operatorname{deg} \psi \leq 1, \quad \operatorname{deg} \phi \leq 2
$$

- Property of orthogonality: $\left\langle\mathbf{u}, P_{n} P_{m}\right\rangle=d_{n}^{2} \delta_{n, m}$ Three-term recurrence relation:

$$
x P_{n}(x)=P_{n+1}(x)+\beta_{n} P_{n}(x)+\gamma_{n} P_{n-1}(x)
$$

- Integral representation with a weight function

$$
\langle\mathbf{u}, P\rangle=\int_{\Gamma} P(z) d \mu(z), \quad \Gamma \subset \mathbb{C}
$$

The weight function and the Favard's result

-The function $\omega(s)$ fulfills a Pearson-type difference eq.:

$$
\phi(s+1) \omega(s+1)-\phi(s) \omega(s)=(x(s+1 / 2)-x(s-1 / 2)) \psi(s)
$$

-The q-polynomials satisfy, in general, a property of orthogonality

$$
\langle\mathbf{u}, P\rangle=\int_{a}^{b} P(z) \omega(z) d_{q} z
$$

- Degenerate Favard's result: some gamma-coefficients of the TTRR are zero.

Orthogonality of q-polynomials for nonstandard parameters (with J. F. Sanchez-Lara) J. Approx. Theory 163 (20II), no. 9, 1246-I268.

The support of the measure and the Jacobi Matrix
Taking into account the TTRR

$$
x P_{n}(x)=P_{n+1}(x)+\beta_{n} P_{n}(x)+\gamma_{n} P_{n-1}(x)
$$

one constructs the Jacobi matrix

$$
J=\left(\begin{array}{cccccc}
\beta_{0} & 1 & 0 & 0 & 0 & \cdots \\
\gamma_{1} & \beta_{1} & 1 & 0 & 0 & \cdots \\
0 & \gamma_{2} & \beta_{2} & 1 & 0 & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

The spectrum of the N -by- N truncated Jacobi matrix are the zeros of $\mathrm{P}_{\mathrm{N}}(\mathrm{x})$ for all N .

Scheme
 of

The Basic Hypergeometric OP

Outline

1. The q-polynomials

* Classical Orthogonal Polynomials
* The support of the measure and the Jacobi Matrix
* q-polynomials. The relevant families

2. The examples

* The big q-Jacobi polynomials
* The Al-Salam-Carlitz polynomials

The big q-Jacobi polynomials

In this case $\phi(x)=(x-a q)(x-c q) / q$
For $a, b, c \in \mathbb{C}, a \neq c, 0<|q|<1$

$a q=1+I, c q=1-I, q=0.7$

$$
a q=1+\underset{\text { Krall. Mass point at } \mathrm{I}+\mathrm{I}}{+I, q q=1}, q=0.7
$$

The Al-Salam-Carlitz polynomials

In this case $\phi(x)=(x-1)(x-a)$
For $a, q \in \mathbb{C}, a \neq 1,0<|q|<1$

$a=1+I, q=0.7 \exp (\pi I / 4)$

$a=1, q=0.7 \exp (\pi I / 4)$

Open problems

- Obtain 'the minimal' weight function for all the relevant families of q-polynomials.
- Obtain the behavior of the zeros of the Krall-type OP, as well the analytic properties when the mass we add is located in the complex plane.
- Give the orthogonality of the relevant families for the 'bad cases'.

[^0]: Work supported by Ministerio de Economía y Competitividad of Spain, grant MTM2012-36732-Co3-OI

