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Goal of this talk

1. First of all, this talk is in honor of Richard (Dick) Askey, André
Ronveaux, Pascal Maroni.

2. We are going to consider the Sobolev-type inner product

〈f ,g〉S = 〈u, fg〉+
M∑

j=1

µj f (νj)(cj)g(νj)(cj), f ,g ∈ P,

where u is a classical linear form, ν1, ..., νM ∈ N, and
µ1, ..., µM, c1, ..., cM ∈ R.

3. A main aim is to present some connection formulas related
to orthogonal Sobolev-type polynomials as general as
possible.

4. Show some numerical experiments with the zeros of
Sobolev-type Krwatchouk polynomials.
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what is ...
a connection formulae



Connection formulae

Given two sequences of polynomials (pn) and (qn), the
connection formula is a way to “connect” such polynomial
sequences:

qn =
n∑

k=0
λn,kpk, n = 0, 1, 2, ....

One can obtain the connection coe�icients in several ways.
For example, if (pn) =ops(u) then for n ∈ N0, one has

λn,k =
〈u,qnpk〉
〈u,pkpk〉

, k = 0, 1, ....,n.
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A Sobolev-type inner product case

Let (pn) =ops(u), and let us consider the Sobolev-type inner
product1

(P,Q) = 〈u,PQ〉+ P(c)tAQ(c),

where A is a positive semidefinite matrix, c ∈ R, and for P,
Pt(x) denotes the row matrix (P(x),P′(x), ...,P(r)(x)).

The following connection formula holds:

Qn(x) = Pn(x)− Pt
n(c)(I + AHn−1)−1AKn−1(x, c).

1This is part of Proposition 2 in [2]
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The single masspoint Krall case

Let (pn) =ops(u), and let us consider the inner product2

(f ,g) = 〈u, fg〉+ λf (c)g(c).

The following connection formula holds:

Qn(x) = Pn(x)− λPn(c)

1 + λKn−1(c, c)
Kn−1(x, c),

where

Km(x, y) =
m∑

k=0

1
〈u,p2

k〉
pk(x)pk(y).

2This is part of Proposition 2 in [5]
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What can connection formula ...
be useful for?



What can the connection formulas be useful
for?

1. Hypergeometric representation.

2. Zeros.

3. Asymptotic behavior.

4. Others.
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One example: hypergemoetric representation

Let us consider the big q-Jacobi case.

We consider the inner product

(f ,g) = 〈ubqJ, fg〉+ λf (cq)g(cq).

The Krall big q-Jacobi polynomials admit the following
representation3

Pλn(x; a,b, c; q) = Dn(x) 5φ4

(
q−n , abqn+1 , q1−α1 , q1−α2 , x

aq2 , cq2 , q−α1 , q−α2 q; q
)
.

3This can be found in [3, §3.1]
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The are several types of
connection formulae



Let us start with the background

We consider a classical linear form u such that

D(φu) = ψu,

where D is lowering operator and deg φ ≤ 2, degψ = 1.

Next, we consider the Sobolev-type inner product4

〈f ,g〉S = 〈u, fg〉+
M∑

j=1

µj f (νj)(cj)g(νj)(cj), f ,g ∈ P. (1)

We consider (pn) =ops(u), (Qn) =ops(〈•, •〉S).

4The next connection formulae can be found in [4]
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First type of connection formulae

First, we can express the inner product (1) as

〈f ,g〉S = 〈u, fg〉+ (Df )tDDg, (2)

where D is the vector di�erential operator defined as

Df :=

(
f (ν1)(x)

∣∣∣
x=c1

, f (ν2)(x)
∣∣∣
x=c2

, ..., f (νM)(x)
∣∣∣
x=cM

)t
,

and D is the diagonal matrix with entries µ1, ..., µM.

The following connection formula holds:

Qn(x) = Pn(x)− Pt
n(I + DKn−1)−1DKn−1(x)

where Km(x) = DyKm(x, y), and Km = DtKm(x).
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A technical result5

Lemma
Let M ∈ N, u be a classical linear form.

Let c1, c2, ..., cM ∈ R, ν1, ν2, ..., νM ∈ N0, and

let us denote by (Qn(x)) the sequence of orthogonal polynomials
with respect to the inner product (1).

If ci is not a zero of Qn(x), for i = 1, 2, ...,M and for all n ∈ N0 then,
there exists a polynomial, namely ζ(x), such that

D
(
ζ(x)S~µn(x;~ν,~c)

)
= ~0

holds.

5A similar result can be found in [1, Lemma 2.1]
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A remark about the polynomial ζ(x)

Observe that if all the ci’s are all di�erent then

ζ(x) =
M∏

j=1

(x − cj)
νj+1.

However, if all of them are equal to each other, i.e. ci = c for
i = 1, 2, ...,M, then

ζ(x) = (x − c)νM+1.

Without loss of generality, we denote by ζ(x) to the
polynomial of minimum degree, namely deg ζ = ν, among all
nonzero polynomials satisfying the conditions of the former
Lemma.
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A little bit more about ζ(x)

It is clear that

〈ζ(x)f (x),g(x)〉S = 〈u, ζ(x)f (x)g(x)〉 = 〈f (x), ζ(x)g(x)〉S.

Let (ζj(x))νj=0 be a sequence of polynomials such that

• deg ζk(x) = k,

• ζk(x)|ζk+1(x) for k = 0, 1, ..., ν − 1,

• ζν(x) = ζ(x).
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Second type of connection formulae6

Let
(
P
[ζ2

j ]

n (x)
)

=ops(ζ2
j u), then

If the following conditions hold

Pn(cj)P[ζ2
1 ]

n−1(cj) · · ·P
[ζ2

ν ]
n−ν(cj) 6= 0, j = 1, 2, ....,M, (3)

then, there exists a family of coe�icients (λj,n)νj=0, not all
identically zero, such that, for any n ≥ ν, we have

Qn(x) =
ν∑

j=0

λj,n ζj(x)P
[ζ2

j ]

n−j(x)

6The idea came up during a conversation with J. F. Mañas Mañas in 2018.
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Third type of connection formulae

In this case we only use the fact that the family is classical

There exists a family of coe�icients (ξj,n)νj=0, not all
identically zero, such that, for any n ≥ ν, we have

Qn(x) =
ν∑

j=0

ξj,n P(j)
n (x)
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Numerical experiment:
the Sobolev-type
Krawtchouck case



A numerical experiment about zeros

Let us consider the inner product:
(f ,g) = 〈uK, fg〉+ λ∆if (c)∆ig(c) + µ∆jf (d)∆jg(d).

In such a case we have the following limit polynomials:
rµn,i,j(x; p,N) = lim

λ→∞
Kn;i,j(x; p,N)

= Kn(x; p,N)−

∣∣∣∣∣∆iKn (c; p,N) µK(i,j)
n−1 (c,d)

∆jKn (d; p,N) 1 + µK(j,j)
n−1 (d,d)

∣∣∣∣∣∣∣∣∣∣K(i,i)
n−1 (c, c) µK(i,j)

n−1 (c,d)

K(j,i)
n−1 (d, c) 1 + µK(j,j)

n−1 (d,d)

∣∣∣∣∣
K(0,i)

n−1 (x, c)

− µ

∣∣∣∣∣K(i,i)
n−1 (c, c) ∆iKn (c; p,N)

K(j,i)
n−1 (d, c) ∆jKn (d; p,N)

∣∣∣∣∣∣∣∣∣∣K(i,i)
n−1 (c, c) µK(i,j)

n−1 (c,d)

K(j,i)
n−1 (d, c) 1 + µK(j,j)

n−1 (d,d)

∣∣∣∣∣
K(0,j)

n−1 (x,d) ,
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Another technical result

Lemma
The following identities hold:

If λ, µ 6= 0, then

(1 + ηn + νn)Kn;i,j(x; p,N) = Kn(x; p,N) + ηnrµn,i,j(x; p,N) + νnSn;i,j(x; p,N),

(1 + ξn + ζn)Kn;i,j(x; p,N) = Kn(x; p,N) + ξnRλn,i,j(x; p,N) + ζnSn;i,j(x; p,N),

where ηn, νn, ξn, ζn ≥ 0 for all n.

If λ 6= 0 and µ = 0, then

(1 + ηn)Kn;i,j(x; p,N) = Kn(x; p,N) + ηnrn;i(x; p,N),

where
ηn =

∆iKn(c; p,N)

1 + K(i,i)
n−1 (c, c)

, n = 1, 2, ... (4)
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Some calculations

The collection of zeros of Krawtchouck for p = 1/2 and N = 12 is

0 1 2 3 4 5 6 7 8 9 10 11 12

We are going to run Wolfram Mathematica with the code
N[SolveValues[KravchSob[x,7,p,12,A,B,i,j,c,d]==0,x],5]

1. For a few cases we set p = 1
2 , A = B = 1055, c = −3, d = 15:

i = j = 1, {−3.9243, 1.7234, 3.9228, 6.0561, 8.1881, 10.378, 17.094}

i = j = 5, {−25.694, 1.5457, 3.8067, 6.0257, 8.2422, 10.494, 55.080}

2. Now we consider i 6= j:

i = 3, j = 2, {−7.6243, 1.5838, 3.8178, 6.0013, 8.1841, 10.416, 20.244}

i = 2, j = 3, {−5.4426, 1.7307, 3.9854, 6.1711, 8.3441, 10.549, 24.914}
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But ....

1. We set p = 1
2 , c = −3, d = 15:

i = j = 1,A = 0.1,B = 1 {0.841, 2.79, 4.76, 6.75, 8.76, 10.8, 375}

i = j = 2,A = 1,B = 0.1 {−66.1, 1.19, 3.24, 5.26, 7.25, 9.22, 11.2}

2. Now we consider i 6= j, c = −3, d = 2.6:

i = 3, j = 4, A = 1, B = 0.1, {−11.3, 1.18, 3.22, 5.23, 7.22, 9.19, 11.1}

i = 4, j = 3, A = 0.1, B = 1, {−0.766, 2.43, 4.76, 6.99, 9.13, 11.1, 43.8}

3. We set p = 1
2 , c = −7, A = B = 1055, d = 2.6:

i = j = 5, {−27.035,−2.5249, 1.9076, 4.1716, 6.3594, 8.5240, 10.697}
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THANK YOU for your attention!
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