SOBOLEV ORTHOGONAL POLYNOMIALS: CONNECTION FORMULAS AND ZEROS

17TH ORTHOGONAL POLYNOMIALS, SPECIAL FUNCTIONS AND APPLICATIONS

Roberto S. Costas Santos
 Universidad Loyola Andalucía

Joint work with Anier Soria

$$
27062024 \text { GRANADA }
$$

GOAL OF THIS TALK

1. First of all, this talk is in honor of Richard (Dick) Askey, André Ronveaux, Pascal Maroni.

GOAL OF THIS TALK

1. First of all, this talk is in honor of Richard (Dick) Askey, André Ronveaux, Pascal Maroni.
2. We are going to consider the Sobolev-type inner product

$$
\langle f, g\rangle_{S}=\langle\mathbf{u}, f g\rangle+\sum_{j=1}^{M} \mu_{j} f^{\left(\nu_{j}\right)}\left(c_{j}\right) g^{\left(\nu_{j}\right)}\left(c_{j}\right), \quad f, g \in \mathbb{P},
$$

where \mathbf{u} is a classical linear form, $\nu_{1}, \ldots, \nu_{M} \in \mathbb{N}$, and $\mu_{1}, \ldots, \mu_{M}, c_{1}, \ldots, c_{M} \in \mathbb{R}$.

GOAL OF THIS TALK

1. First of all, this talk is in honor of Richard (Dick) Askey, André Ronveaux, Pascal Maroni.
2. We are going to consider the Sobolev-type inner product

$$
\langle f, g\rangle_{S}=\langle\mathbf{u}, f g\rangle+\sum_{j=1}^{M} \mu_{j} f^{\left(\nu_{j}\right)}\left(c_{j}\right) g^{\left(\nu_{j}\right)}\left(c_{j}\right), \quad f, g \in \mathbb{P}
$$

where \mathbf{u} is a classical linear form, $\nu_{1}, \ldots, \nu_{M} \in \mathbb{N}$, and $\mu_{1}, \ldots, \mu_{M}, c_{1}, \ldots, c_{M} \in \mathbb{R}$.
3. A main aim is to present some connection formulas related to orthogonal Sobolev-type polynomials as general as possible.

GOAL OF THIS TALK

1. First of all, this talk is in honor of Richard (Dick) Askey, André Ronveaux, Pascal Maroni.
2. We are going to consider the Sobolev-type inner product

$$
\langle f, g\rangle_{S}=\langle\mathbf{u}, f g\rangle+\sum_{j=1}^{M} \mu_{j} f^{\left(\nu_{j}\right)}\left(c_{j}\right) g^{\left(\nu_{j}\right)}\left(c_{j}\right), \quad f, g \in \mathbb{P},
$$

where \mathbf{u} is a classical linear form, $\nu_{1}, \ldots, \nu_{M} \in \mathbb{N}$, and $\mu_{1}, \ldots, \mu_{M}, c_{1}, \ldots, c_{M} \in \mathbb{R}$.
3. A main aim is to present some connection formulas related to orthogonal Sobolev-type polynomials as general as possible.
4. Show some numerical experiments with the zeros of Sobolev-type Krwatchouk polynomials.

WHAT IS ...
a connection formulae

CONNECTION FORMULAE

Given two sequences of polynomials $\left(p_{n}\right)$ and $\left(q_{n}\right)$, the connection formula is a way to "connect" such polynomial sequences:

$$
q_{n}=\sum_{k=0}^{n} \lambda_{n, k} p_{k}, \quad n=0,1,2, \ldots
$$

CONNECTION FORMULAE

Given two sequences of polynomials $\left(p_{n}\right)$ and $\left(q_{n}\right)$, the connection formula is a way to "connect" such polynomial sequences:

$$
q_{n}=\sum_{k=0}^{n} \lambda_{n, k} p_{k}, \quad n=0,1,2, \ldots
$$

One can obtain the connection coefficients in several ways.
For example, if $\left(p_{n}\right)=o p s(\mathbf{u})$ then for $n \in \mathbb{N}_{0}$, one has

$$
\lambda_{n, k}=\frac{\left\langle\mathbf{u}, q_{n} p_{k}\right\rangle}{\left\langle\mathbf{u}, p_{k} p_{k}\right\rangle}, \quad k=0,1, \ldots ., n .
$$

A SOBOLEV-TYPE INNER PRODUCT CASE

Let $\left(p_{n}\right)=o p s(\mathbf{u})$, and let us consider the Sobolev-type inner product ${ }^{1}$

$$
(P, Q)=\langle\mathbf{u}, P Q\rangle+\mathbb{P}(c)^{t} A \mathbb{Q}(c)
$$

where A is a positive semidefinite matrix, $c \in \mathbb{R}$, and for P, $\mathbb{P}^{\mathrm{t}}(x)$ denotes the row matrix $\left(P(x), P^{\prime}(x), \ldots, P^{(r)}(x)\right)$.

[^0]
A SOBOLEV-TYPE INNER PRODUCT CASE

Let $\left(p_{n}\right)=o p s(\mathbf{u})$, and let us consider the Sobolev-type inner product ${ }^{1}$

$$
(P, Q)=\langle\mathbf{u}, P Q\rangle+\mathbb{P}(c)^{t} A \mathbb{Q}(c)
$$

where A is a positive semidefinite matrix, $c \in \mathbb{R}$, and for P, $\mathbb{P}^{t}(x)$ denotes the row matrix $\left(P(x), P^{\prime}(x), \ldots, P^{(r)}(x)\right)$.

The following connection formula holds:

$$
Q_{n}(x)=P_{n}(x)-P_{n}^{t}(c)\left(I+A \mathbb{H}_{n-1}\right)^{-1} A \mathbb{K}_{n-1}(x, c)
$$

${ }^{1}$ This is part of Proposition 2 in [2]

The single masspoint Krall case

Let $\left(p_{n}\right)=o p s(\mathbf{u})$, and let us consider the inner product ${ }^{2}$

$$
(f, g)=\langle\mathbf{u}, f g\rangle+\lambda f(c) g(c) .
$$

${ }^{2}$ This is part of Proposition 2 in [5]

Let $\left(p_{n}\right)=o p s(\mathbf{u})$, and let us consider the inner product ${ }^{2}$

$$
(f, g)=\langle\mathbf{u}, f g\rangle+\lambda f(c) g(c) .
$$

The following connection formula holds:

$$
Q_{n}(x)=P_{n}(x)-\frac{\lambda P_{n}(c)}{1+\lambda K_{n-1}(c, c)} K_{n-1}(x, c),
$$

where

$$
K_{m}(x, y)=\sum_{k=0}^{m} \frac{1}{\left\langle\mathbf{u}, p_{k}^{2}\right\rangle} p_{k}(x) p_{k}(y) .
$$

[^1]
WHAT CAN CONNECTION FORMULA ... be useful for?

1. Hypergeometric representation.
2. Zeros.
3. Asymptotic behavior.
4. Others.

ONE EXAMPLE: HYPERGEMOETRIC REPRESENTATION

Let us consider the big q-Jacobi case.
We consider the inner product

$$
(f, g)=\left\langle\mathbf{u}^{b q J}, f g\right\rangle+\lambda f(c q) g(c q)
$$

The Krall big q-Jacobi polynomials admit the following representation ${ }^{3}$

$$
P_{n}^{\lambda}(x ; a, b, c ; q)=D_{n}(x)_{5} \phi_{4}\left(\left.\begin{array}{c}
q^{-n}, a b q^{n+1}, q^{1-\alpha_{1}}, q^{1-\alpha_{2}}, x
\end{array} \right\rvert\, q ; q\right)
$$

The are several types of connection formulae

We consider a classical linear form u such that

$$
\mathcal{D}(\phi \mathbf{u})=\psi \mathbf{u}
$$

where \mathcal{D} is lowering operator and $\operatorname{deg} \phi \leq 2$, $\operatorname{deg} \psi=1$.
${ }^{4}$ The next connection formulae can be found in [4]

We consider a classical linear form u such that

$$
\mathcal{D}(\phi \mathbf{u})=\psi \mathbf{u}
$$

where \mathcal{D} is lowering operator and $\operatorname{deg} \phi \leq 2$, $\operatorname{deg} \psi=1$.
Next, we consider the Sobolev-type inner product ${ }^{4}$

$$
\begin{equation*}
\langle f, g\rangle_{S}=\langle\mathbf{u}, f g\rangle+\sum_{j=1}^{M} \mu_{j} f^{\left(\nu_{j}\right)}\left(c_{j}\right) g^{\left(\nu_{j}\right)}\left(c_{j}\right), \quad f, g \in \mathbb{P} . \tag{1}
\end{equation*}
$$

${ }^{4}$ The next connection formulae can be found in [4]

We consider a classical linear form u such that

$$
\mathcal{D}(\phi \mathbf{u})=\psi \mathbf{u}
$$

where \mathcal{D} is lowering operator and $\operatorname{deg} \phi \leq 2, \operatorname{deg} \psi=1$.
Next, we consider the Sobolev-type inner product ${ }^{4}$

$$
\begin{equation*}
\langle f, g\rangle_{S}=\langle\mathbf{u}, f g\rangle+\sum_{j=1}^{M} \mu_{j} f^{\left(\nu_{j}\right)}\left(c_{j}\right) g^{\left(\nu_{j}\right)}\left(c_{j}\right), \quad f, g \in \mathbb{P} . \tag{1}
\end{equation*}
$$

We consider $\left(p_{n}\right)=\operatorname{ops}(\mathbf{u}),\left(Q_{n}\right)=\operatorname{ops}\left(\langle\bullet, \bullet\rangle_{\mathrm{s}}\right)$.
${ }^{4}$ The next connection formulae can be found in [4]

FIRST TYPE OF CONNECTION FORMULAE

First, we can express the inner product (1) as

$$
\begin{equation*}
\langle f, g\rangle_{S}=\langle\mathbf{u}, f g\rangle+(\mathbb{D} f)^{t} D \mathbb{D} g, \tag{2}
\end{equation*}
$$

where \mathbb{D} is the vector differential operator defined as

$$
\mathbb{D} f:=\left(\left.f^{\left(\nu_{1}\right)}(x)\right|_{x=c_{1}},\left.f^{\left(\nu_{2}\right)}(x)\right|_{x=c_{2}}, \ldots,\left.f^{\left(\nu_{M}\right)}(x)\right|_{x=c_{M}}\right)^{t},
$$

and D is the diagonal matrix with entries $\mu_{1}, \ldots, \mu_{\mathrm{M}}$.

First, we can express the inner product (1) as

$$
\begin{equation*}
\langle f, g\rangle_{S}=\langle\mathbf{u}, f g\rangle+(\mathbb{D} f)^{t} D \mathbb{D} g \tag{2}
\end{equation*}
$$

where \mathbb{D} is the vector differential operator defined as

$$
\mathbb{D} f:=\left(\left.f^{\left(\nu_{1}\right)}(x)\right|_{x=c_{1}},\left.f^{\left(\nu_{2}\right)}(x)\right|_{x=c_{2}}, \ldots,\left.f^{\left(\nu_{M}\right)}(x)\right|_{x=c_{M}}\right)^{t}
$$

and D is the diagonal matrix with entries μ_{1}, \ldots, μ_{M}.
The following connection formula holds:

$$
Q_{n}(x)=P_{n}(x)-\mathbb{P}_{n}^{t}\left(\mathbb{I}+D \mathbb{K}_{n-1}\right)^{-1} D \mathbb{K}_{n-1}(x)
$$

where $\mathbb{K}_{m}(x)=\mathbb{D}_{y} K_{m}(x, y)$, and $\mathbb{K}_{m}=\mathbb{D}^{t} \mathbb{K}_{m}(x)$.

A TECHNICAL RESULT ${ }^{5}$

Lemma

Let $M \in \mathbb{N}$, u be a classical linear form.
Let $c_{1}, c_{2}, \ldots, c_{M} \in \mathbb{R}, \nu_{1}, \nu_{2}, \ldots, \nu_{M} \in \mathbb{N}_{0}$, and
let us denote by $\left(Q_{n}(x)\right)$ the sequence of orthogonal polynomials with respect to the inner product (1).

If c_{i} is not a zero of $Q_{n}(x)$, for $i=1,2, \ldots, M$ and for all $n \in \mathbb{N}_{0}$ then, there exists a polynomial, namely $\zeta(x)$, such that

$$
\mathbb{D}\left(\zeta(x) S_{n}^{\vec{\mu}}(x ; \vec{\nu}, \vec{c})\right)=\overrightarrow{0}
$$

holds.
${ }^{5} \mathrm{~A}$ similar result can be found in [1, Lemma 2.1]

Observe that if all the c_{i} 's are all different then

$$
\zeta(x)=\prod_{j=1}^{M}\left(x-c_{j}\right)^{\nu_{j}+1}
$$

A REMARK ABOUT THE POLYNOMIAL $\zeta(x)$

Observe that if all the c_{i} 's are all different then

$$
\zeta(x)=\prod_{j=1}^{M}\left(x-c_{j} j^{\nu_{j}+1} .\right.
$$

However, if all of them are equal to each other, i.e. $c_{i}=c$ for $i=1,2, \ldots, M$, then

$$
\zeta(x)=(x-c)^{\nu_{M}+1} .
$$

A REMARK ABOUT THE POLYNOMIAL $\zeta(x)$

Observe that if all the c_{i} 's are all different then

$$
\zeta(x)=\prod_{j=1}^{M}\left(x-c_{j}\right)^{\nu_{j}+1} .
$$

However, if all of them are equal to each other, i.e. $c_{i}=c$ for $i=1,2, \ldots, M$, then

$$
\zeta(x)=(x-c)^{\nu_{M}+1} .
$$

Without loss of generality, we denote by $\zeta(x)$ to the polynomial of minimum degree, namely $\operatorname{deg} \zeta=\nu$, among all nonzero polynomials satisfying the conditions of the former Lemma.

It is clear that

$$
\langle\zeta(x) f(x), g(x)\rangle_{S}=\langle\mathbf{u}, \zeta(x) f(x) g(x)\rangle=\langle f(x), \zeta(x) g(x)\rangle_{S}
$$

It is clear that

$$
\langle\zeta(x) f(x), g(x)\rangle_{S}=\langle\mathbf{u}, \zeta(x) f(x) g(x)\rangle=\langle f(x), \zeta(x) g(x)\rangle_{S}
$$

Let $\left(\zeta_{j}(x)\right)_{j=0}^{\nu}$ be a sequence of polynomials such that

- $\quad \operatorname{deg} \zeta_{k}(x)=k$,
- $\zeta_{k}(x) \mid \zeta_{k+1}(x)$ for $k=0,1, \ldots, \nu-1$,
- $\zeta_{\nu}(x)=\zeta(x)$.

SECOND TYPE OF CONNECTION FORMULAE ${ }^{6}$

$$
\text { Let }\left(P_{n}^{\left[\zeta_{j}^{2}\right]}(x)\right)=\operatorname{ops}\left(\zeta_{j}^{2} \mathbf{u}\right) \text {, then }
$$

${ }^{6}$ The idea came up during a conversation with J. F. Mañas Mañas in 2018.

SECOND TYPE OF CONNECTION FORMULAE ${ }^{6}$

Let $\left(P_{n}^{\left[\zeta_{j}^{2}\right]}(x)\right)=\operatorname{ops}\left(\zeta_{j}^{2} \mathbf{u}\right)$, then

If the following conditions hold

$$
\begin{equation*}
P_{n}\left(c_{j}\right) P_{n-1}^{\left[\zeta_{1}^{2}\right]}\left(c_{j}\right) \cdots P_{n-\nu}^{\left[\zeta_{\nu}^{2}\right]}\left(c_{j}\right) \neq 0, \quad j=1,2, \ldots, M \tag{3}
\end{equation*}
$$

${ }^{6}$ The idea came up during a conversation with J. F. Mañas Mañas in 2018.

SECOND TYPE OF CONNECTION FORMULAE ${ }^{6}$

Let $\left(P_{n}^{\left[\zeta_{j}^{2}\right]}(x)\right)=\operatorname{ops}\left(\zeta_{j}^{2} \mathbf{u}\right)$, then

If the following conditions hold

$$
\begin{equation*}
P_{n}\left(c_{j}\right) P_{n-1}^{\left[\zeta_{-1}^{2}\right]}\left(c_{j}\right) \cdots P_{n-\nu}^{\left[\zeta_{2}^{2}\right]}\left(c_{j}\right) \neq 0, \quad j=1,2, \ldots, M, \tag{3}
\end{equation*}
$$

then, there exists a family of coefficients $\left(\lambda_{j, n}\right)_{j=0}^{\nu}$, not all identically zero, such that, for any $n \geq \nu$, we have

$$
Q_{n}(x)=\sum_{j=0}^{\nu} \lambda_{j, n} \zeta_{j}(x) P_{n-j}^{\left[\zeta_{j}^{2}\right]}(x)
$$

${ }^{6}$ The idea came up during a conversation with J. F. Mañas Mañas in 2018.

In this case we only use the fact that the family is classical

In this case we only use the fact that the family is classical
There exists a family of coefficients $\left(\xi_{j, n}\right)_{j=0}^{\nu}$, not all identically zero, such that, for any $n \geq \nu$, we have

$$
Q_{n}(x)=\sum_{j=0}^{\nu} \xi_{j, n} P_{n}^{(j)}(x)
$$

NUMERICAL EXPERIMENT:

 the Sobolev-type Krawtchouck caseLet us consider the inner product:

$$
(f, g)=\left\langle\mathbf{u}^{\mathrm{K}}, f g\right\rangle+\lambda \Delta^{i} f(c) \Delta^{i} g(c)+\mu \Delta^{j} f(d) \Delta^{j} g(d)
$$

A NUMERICAL EXPERIMENT ABOUT ZEROS

Let us consider the inner product:

$$
(f, g)=\left\langle\mathbf{u}^{\mathrm{K}}, f g\right\rangle+\lambda \Delta^{i} f(c) \Delta^{i} g(c)+\mu \Delta^{j} f(d) \Delta^{j} g(d)
$$

In such a case we have the following limit polynomials:

$$
r_{n, i, j}^{\mu}(x ; p, N)=\lim _{\lambda \rightarrow \infty} K_{n ; i, j}(x ; p, N)
$$

$$
=K_{n}(x ; p, N)-\frac{\left|\begin{array}{cc}
\Delta^{i} K_{n}(c ; p, N) & \mu K_{n-1}^{(i, j)}(c, d) \\
\Delta^{j} K_{n}(d ; p, N) & 1+\mu K_{n-1}^{(j, j)}(d, d)
\end{array}\right|}{\left|\begin{array}{cc}
K_{n}^{(i, i)}(c, c) & \mu K_{n-1}^{(i, j)}(c, d) \\
K_{n-1}^{(j, i)}(d, c) & 1+\mu K_{n-1}^{(j, j)}(d, d)
\end{array}\right|} K_{n-1}^{(0, i)}(x, c)
$$

$$
-\mu \frac{\left|\begin{array}{cc}
K_{n-1}^{(i, i)}(c, c) & \Delta^{i} K_{n}(c ; p, N) \\
K_{n-1}^{(j, i)}(d, c) & \Delta^{j} K_{n}(d ; p, N)
\end{array}\right|}{\left|\begin{array}{lc}
K_{n-1}^{(i, i)}(c, c) & \mu K_{n-1}^{(i, j)}(c, d) \\
K_{n-1}^{(j, i)}(d, c) & 1+\mu K_{n-1}^{(j, j)}(d, d)
\end{array}\right|} K_{n-1}^{(0, j)}(x, d)
$$

ANOTHER TECHNICAL RESULT

Lemma

The following identities hold:
■ If $\lambda, \mu \neq 0$, then

$$
\begin{aligned}
& \left(1+\eta_{n}+\nu_{n}\right) K_{n ; i, j}(x ; p, N)=K_{n}(x ; p, N)+\eta_{n} r_{n, i, j}^{\mu}(x ; p, N)+\nu_{n} S_{n ; i, j}(x ; p, N) \\
& \left(1+\xi_{n}+\zeta_{n}\right) K_{n ; i, j}(x ; p, N)=K_{n}(x ; p, N)+\xi_{n} R_{n, i, j}^{\lambda}(x ; p, N)+\zeta_{n} S_{n ; i, j}(x ; p, N)
\end{aligned}
$$

where $\eta_{n}, \nu_{n}, \xi_{n}, \zeta_{n} \geq 0$ for all n.
■ If $\lambda \neq \mathrm{O}$ and $\mu=\mathrm{o}$, then

$$
\left(1+\eta_{n}\right) K_{n ; i, j}(x ; p, N)=K_{n}(x ; p, N)+\eta_{n} r_{n ; i}(x ; p, N)
$$

where

$$
\begin{equation*}
\eta_{n}=\frac{\Delta^{i} K_{n}(c ; p, N)}{1+K_{n-1}^{(i, i)}(c, c)}, \quad n=1,2, \ldots \tag{4}
\end{equation*}
$$

SOME CALCULATIONS

The collection of zeros of Krawtchouck for $p=1 / 2$ and $N=12$ is

We are going to run Wolfram Mathematica with the code $N[$ SolveValues[KravchSob[x, $7, p, 12, A, B, i, j, c, d]==0, x], 5]$

1. For a few cases we set $p=\frac{1}{2}, A=B=10^{55}, c=-3, d=15$:

$$
\begin{aligned}
& i=j=1, \quad\{-3.9243,1.7234,3.9228,6.0561,8.1881,10.378,17.094\} \\
& i=j=5, \quad\{-25.694,1.5457,3.8067,6.0257,8.2422,10.494,55.080\}
\end{aligned}
$$

SOME CALCULATIONS

The collection of zeros of Krawtchouck for $p=1 / 2$ and $N=12$ is

We are going to run Wolfram Mathematica with the code $N[$ SolveValues[KravchSob[x, $7, p, 12, A, B, i, j, c, d]==0, x], 5]$

1. For a few cases we set $p=\frac{1}{2}, A=B=10^{55}, c=-3, d=15$:

$$
\begin{aligned}
& i=j=1, \quad\{-3.9243,1.7234,3.9228,6.0561,8.1881,10.378,17.094\} \\
& i=j=5, \quad\{-25.694,1.5457,3.8067,6.0257,8.2422,10.494,55.080\}
\end{aligned}
$$

2. Now we consider $i \neq j$:

$$
\begin{aligned}
& i=3, j=2, \quad\{-7.6243,1.5838,3.8178,6.0013,8.1841,10.416,20.244\} \\
& i=2, j=3, \quad\{-5.4426,1.7307,3.9854,6.1711,8.3441,10.549,24.914\}
\end{aligned}
$$

1. We set $p=\frac{1}{2}, c=-3, d=15$:

$$
\begin{aligned}
& i=j=1, A=0.1, B=1 \quad\{0.841,2.79,4.76,6.75,8.76,10.8,375\} \\
& i=j=2, A=1, B=0.1 \quad\{-66.1,1.19,3.24,5.26,7.25,9.22,11.2\}
\end{aligned}
$$

1. We set $p=\frac{1}{2}, c=-3, d=15$:

$$
\begin{aligned}
& i=j=1, A=0.1, B=1 \quad\{0.841,2.79,4.76,6.75,8.76,10.8,375\} \\
& i=j=2, A=1, B=0.1 \quad\{-66.1,1.19,3.24,5.26,7.25,9.22,11.2\}
\end{aligned}
$$

2. Now we consider $i \neq j, c=-3, d=2.6$:

$$
\begin{aligned}
& i=3, j=4, A=1, B=0.1,\{-11.3,1.18,3.22,5.23,7.22,9.19,11.1\} \\
& i=4, j=3, A=0.1, B=1,\{-0.766,2.43,4.76,6.99,9.13,11.1,43.8\}
\end{aligned}
$$

3. We set $p=\frac{1}{2}, c=-7, A=B=10^{55}, d=2.6$:

$$
i=j=5, \quad\{-27.035,-2.5249,1.9076,4.1716,6.3594,8.5240,10.697\}
$$

References

M. Alfaro, G. López, and M. L. Rezola. SOME PROPERTIES OF ZEROS OF SOBOLEV-TYPE ORTHOGONAL POLYNOMIALS.
J. Comput. Appl. Math., 69(1):171-179, 1996.
doi:10.1016/0377-0427(95)00034-8.

- M. Alfaro, F. Marcellán, M. L. Rezola, and A. Ronveaux. SOBOLEV-TYPE ORTHOGONAL POLYNOMIALS: THE NONDIAGONAL CASE.
J. Approx. Theory, 83(2):266-287, 1995.
doi:10.1006/jath.1995.1121.
围 R. Álvarez-Nodarse and R. S. Costas-Santos.
Limit relations between q-Krall type orthogonal polynomials.
J. Math. Anal. Appl., 322(1):158-176, 2006.
doi:10.1016/j.jmaa.2005.08.067.
R. S. Costas-Santos.

Sobolev orthogonal polynomials: Connection formulae.

Redel. Revista Granmense de Desarrollo Local, 6(4):25-34, 2022.
URL: https:
//ediciones.udg.co.cu/libros/index.php/libros/catalog/view/26/56/135-1.
目 K. H. Kwon, G. J. Yoon, and L. L. Littlejohn. BOCHNER-KRALL ORTHOGONAL POLYNOMIALS.
In Special functions. Proceedings of the international workshop on special functions asymptotics, harmonic analysis and mathematical physics, Hong Kong, China, June 21-25, 1999, pages 181-193. Singapore: World Scientific, 2000.
doi:10.1142/9789812792303_0015.

THANK YOU for your attention!

[^0]: ${ }^{1}$ This is part of Proposition 2 in [2]

[^1]: ${ }^{2}$ This is part of Proposition 2 in [5]

