rscosan.com

Talk: Ceros de polinomios de Krawtchuk-Sobolev

Ceros de polinomios de Krawtchuk-Sobolev

Date: 2006..09..??
Event: International congress COMPUMATG 2022
Venue: University of Granma (CUBA)

Abstract

En esta charla consideramos los polinomios ortogonales con respecto al producto interno de tipo Sobolev: \[ (f,g)_{S;\nu}= \langle {\bf u},fg\rangle + M \Delta^\nu f(\alpha)\Delta^\nu g(\alpha), \] donde \({\bf u}\) es el funcional linear asociado con los polinomios de Krawtchuk, \(M>0\), \(\alpha\in\mathbb R\), \(\nu\in\mathbb N\), y \(\Delta\) es el operador en diferencias hacia arriba.

Se obtendrán ciertos resultados algebraicos y empleando dichas identidades analizaremos de forma numérica el comportamiento de los ceros de los polinomios de Krwatchuk-Sobolev.

Este trabajo se realiza junto a D. Anier Soria-Lorente.

Download

Link Size Description
?? KB Slides (PDF, ?? pages, ?? slides)