Zeros of polynomials orthogonal with respect to a signed weight
Atia, M. J.; Benabdallah M. and Costas-Santos, R.S. Indagationes Mathematicae. New Series 23 no. 1-2 (2012), 26 — 31Abstract
In this paper we consider the polynomial sequence \((P_n^{\alpha,q}(x))\) that is orthogonal on \([-1,1]\) with respect to the weight function \(x^{2q+1}(1-x^2)^\alpha(1-x)\), \(\alpha > -1\), \(q\in\mathbb N\); we obtain the coefficients of the tree-term recurrence relation (TTRR) by using a different method from the one derived in [1]; we prove that the interlacing property does not hold properly for such polynomial sequence.
[1] Atia M. J., Marcellan F., and Rocha I. A., On semi-classical orthogonal polynomials: A quasi-definite functional of class 1. Facta Universitatis (Nis). Ser. Math. Inform. 17 (2002), 25 —46
Download
Link | Size | Description |
---|---|---|
paper_15.pdf | 122 KB | Preprint (PDF, 12 Pages) |
BibTeX
@article {MR2877399, AUTHOR = {Atia, M. J. and Benabdallah, M. and Costas-Santos, R. S.}, TITLE = {Zeros of polynomials orthogonal with respect to a signed weight}, JOURNAL = {Indag. Math. (N.S.)}, FJOURNAL = {Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae. New Series}, VOLUME = {23}, YEAR = {2012}, NUMBER = {1-2}, PAGES = {26--31}, ISSN = {0019-3577}, MRCLASS = {33C45 (42C05)}, MRNUMBER = {2877399 (2012m:33007)}, ZBL = {1236.42020}, MRREVIEWER = {Serhan Varma}, DOI = {10.1016/j.indag.2011.09.011}, URL = {http://dx.doi.org/10.1016/j.indag.2011.09.011}, }